MOSFET ZTC Condition Analysis for a Self-Biased Current Reference Design

Total Page:16

File Type:pdf, Size:1020Kb

MOSFET ZTC Condition Analysis for a Self-Biased Current Reference Design POLITECNICO DI TORINO Repository ISTITUZIONALE MOSFET ZTC condition analysis for a self-biased current reference design Original MOSFET ZTC condition analysis for a self-biased current reference design / Toledo, P.; Klimach, H.; Cordova, D.; Bampi, S.; Fabris, E.. - In: JICS. JOURNAL OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 1807-1953. - 10:2(2015), pp. 103-112. Availability: This version is available at: 11583/2743197 since: 2019-07-23T11:38:05Z Publisher: Brazilian Microelectronics Society Published DOI: Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 16 August 2019 MOSFET ZTC Condition Analysis for a Self-biased Current Reference Design Pedro Toledo1,2, Hamilton Klimach2, David Cordova1,2, Sergio Bampi2 and Eric Fabris1,2 1NSCAD Microeletrônica, UFRGS, Porto Alegre, RS, Brazil 2PGMicro, UFRGS, Porto Alegre, RS, Brazil e-mail: [email protected], [email protected], [email protected], [email protected], [email protected] ABSTRACT In this paper a self-biased current reference based on Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) Zero Temperature Coefficient (ZTC) condition is proposed. It can be imple- mented in any Complementary Metal-Oxide-Semiconductor (CMOS) fabrication process and pro- vides another alternative to design current references. In order to support the circuit design, ZTC condition is analyzed using a MOSFET model that is continuous from weak to strong inversion, show- ing that this condition always occurs from moderate to strong inversion in any CMOS process. The proposed topology was designed in a 180 nm process, operates with a supply voltage from 1.4V to 1.8 V and occupies around 0.010mm2 of silicon area. From circuit simulations our reference showed a temperature coefficient (TC) of 15 ppm/oC from -40 to +85oC, and a fabrication process sensitivity of σ/μ = 4.5% for the current reference, including average process and local mismatch variability analysis. The simulated power supply sensitivity is estimated around 1%/V. Index Terms: MOSFET ZTC Condition, Current Reference Source and Low Temperature Coefficient. I. INTRODUCTION temperature and process variations. This condition defines a biasing point where the drain current pres- Current references are essential building blocks ents small temperature sensitivity, as can be seen in for analog, mixed-signal and RF designs, often be- Fig. 1. The ZTC current condition occurs for every ing used for biasing of analog subsystems inside the MOSFET in any technology, for N-Channel Metal- chip. The usual way to generate a current reference Oxide-Semiconductor (NMOS) and P-Channel Metal- is through the implementation of a voltage reference Oxide-Semiconductor (PMOS) transistors, and it is [1], [7], [10], [16] and applying this voltage over a the effect of mutual cancellation of the channel carrier resistive device [2]. Another approach is using a de- mobility and the threshold voltage dependencies on vice where a physical property or condition naturally temperature [4]. Remembering that the drain current establishes an operating current, which can be used as increases when mobility increases and when threshold a reference [3]– [6], [8], [9], [14], [18]. voltage decreases, and that mobility and threshold volt- Any kind of Direct Current (DC) reference, ei- age both decrease when temperature increases, it can ther a voltage or a current one, must offer apprecia- ble thermal stability and power supply rejection, as its main characteristics. In addition, adequate fabrication repeatability ensures that the biasing operation point of the analog blocks is almost the same in every fabricated chip, and reveals how sensitive the current generator is with respect to fabrication process variations [19]. The main idea of this paper is to use the phys- ical condition of MOSFETs called “zero temperature coefficient” (ZTC) to implement a circuit topology Figure 1. NMOS ZTC point for (a) 180 and (b) 350nm bulk-CMOS where the resulting current offers low sensitivity to processes. Journal of Integrated Circuits and Systems 2015; v.10 / n.2:103-112 103 MOSFET ZTC Condition Analysis for a Self-biased Current Reference Design Toledo, Klimach, Cordova, Bampi & Fabris be proved that both effects can cancel each other at a tures ranging from -45 to +85oC, for a 180 nm pro- certain bias point. Fig. 1 presents the drain current vs cess. ZTC operation point can be seen around VGB ≈ gate-source voltage of NMOS transistors under three 760mV for a transistor with VT0 = 430mV, resulting temperatures for two different fabrication process, and that ZTC point occurs for an overdrive voltage around in both figures a convergence point can be seen for the 330mV, meaning the transistor operates in strong in- three I-V curves drawn. version. Fig. 1 (b) shows the same for an NMOS tran- The traditional analysis of this effect presented sistor in a 350 nm CMOS process. in literature is based on the strong inversion quadratic In a more general analysis, we can suppose that MOSFET model [4]. In this work we use a different the ZTC condition can also happen in moderate inver- analytical approach, based on a continuous MOSFET sion and a more complete MOSFET model must be model that can predict its behavior from weak to strong used, such as one presented in [11], which describes inversion [11][21]. Based on this analysis, we verify continuously transistor behavior at any inversion level. that the ZTC point occurs from moderate to strong The well-known Advanced Compact Model (ACM) inversion for any CMOS process. is a design-oriented MOSFET model suitable for an- This paper is organized as follows. In Section II, alog integrated-circuit design. From this model, Eqs an analytical formulation and the discussion about the (3) and (4) give the drain current of a long channel ZTC operating point using an all-region CMOS com- NMOSFET. pact model are presented. In Section III, simulation results from three fabrication processes are presented, (3) regarding the ZTC operating point. After selecting a fabrication process for our design, in Section IV a (4) self-biased CMOS current reference topology is pro- posed and described. The simulation results are pre- sented in section V, followed by comparisons to other where IF(R) is the forward (reverse) current, if(r) references proposed in literature. Finally, in section VI, is the forward (reverse) inversion coefficient, IS is the the concluding remarks are drawn. normalization current, and ϕt is the thermal voltage. Also from this model, Eqs. (5), (6) and (7) re- late source and drain inversion coefficients (forward II. MOSFET ZTC CONDITION and reverse), if and ir, with the three external voltages applied to transistor terminals, VGB, VSB and VDB, us- MOSFET ZTC condition derives from mutual ing bulk terminal as reference. cancellation of mobility and threshold voltage depen- dencies on temperature [4]-[5], at a particular gate- to-bulk voltage bias. The drain current ZTC operating (5) bias point was firstly defined in [4] and after in other correlated publications, always based on strong inver- sion quadratic MOSFET model. From [4], ZTC oper- ating point is given by Eqs. (1) and (2). (6) (1) (7) (2) where VP is called the pinch-off voltage, ϒ is the body effect coefficient, VFB is the flat band voltage and ϕF is the Fermi potential at the bulk of semiconductor where T0 is the room temperature, VT0(T0) is the threshold voltage at room temperature, n is the under transistor channel. First order temperature dependence of VT0 can slope factor, VSB is the source-bulk voltage, αVT0 is the thermal coefficient of the threshold voltage (a nega- be given by Eqs. (8) and (9) [11]. tive parameter, since VT0 decreases with temperature), (8) μ(T0) is the low field mobility at room temperature, C’ox is the oxide capacitance per unit of area and (W/L) is the transistor aspect ratio. and are defined as gate- (9) bulk and drain current ZTC bias point, respectively. Fig. 1 (a) shows the drain current (in a log scale) V ) as a function of gate-bulk voltage ( GB of a saturated where q is the electron charge and EG is the sil- long-channel NMOSFET, simulated under tempera- icon band-gap energy. Fig. 2 presents expected values 104 Journal of Integrated Circuits and Systems 2015; v.10 / n.2:103-112 MOSFET ZTC Condition Analysis for a Self-biased Current Reference Design Toledo, Klimach, Cordova, Bampi & Fabris (13) Assuming that and putting (8) in (13) (14) Noting that the second term of the right branch Figure 2. α vs N for different t [13]. VT0 A ox of the Eq. (14) is equal to for αVT0 for wide ranges of doping concentration (NA) and oxide thickness (t ) [13]. The target-technologies ox (15) for this study are below 350 nm, which corresponds to o αVT0 values between -3.5 and -0.5 mV/ C [13], that is the range used in the following analysis. In addition, Eq. (10) gives the thermal mobility dependence [13]. And putting Eq. (15) in (14), (10) (16) where αμ is the temperature dependence power for mobility model. Since the carriers in inversion layer of transistors undergo several scattering mechanisms, αμ is negative, and its value depends on prevalent scat- Isolating the term from Eq. (16), we get tering mechanisms (such as Coulombic, phonon, or interface scatterings - all of them interfering on car- rier transport). Related to electron mobility and un- der room temperature this parameter varies in a range (17) from -1.5 for high doping concentrations to – 2.4 for light doping concentrations [13]. If one derives the drain current expression for The derivative of normalization current regard- temperature in saturation region (i << i ), the con- r f ing the absolute temperature can be found from Eq.
Recommended publications
  • By Erika Azabache Villar a Thesis Submitted in Partial Fulfillment of The
    SMALLER/FASTER DELTA-SIGMA DIGITAL PIXEL SENSORS by Erika Azabache Villar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Integrated Circuits and Systems Department of Electrical and Computer Engineering University of Alberta c Erika Azabache Villar, 2016 Abstract A digital pixel sensor (DPS) array is an image sensor where each pixel has an analog-to-digital converter (ADC). Recently, a logarithmic delta-sigma (ΔΣ) DPS array, using first-order ΔΣ ADCs, achieved wide dynamic range and high signal-to-noise-and-distortion ratios at video rates, requirements that are difficult to meet using conventional image sensors. However, this state-of-the-art ΔΣ DPS design is either too large for some applications, such as optical imag- ing, or too slow for others, such as gamma imaging. Consequently, this master’s thesis investi- gates smaller or faster ΔΣ DPS designs, relative to the state of the art. All designs are validated through simulations. Commercial image sensors, for optical and gamma imaging, are used as targeted baselines to establish competitive specifications. To achieve a smaller pixel, process scaling is exploited. Three logarithmic ΔΣ DPS designs are presented for 180, 130, and 65 nm fabrication processes, demonstrating a path to competitiveness for the optical imaging market. Decimator and readout circuits are improved, compared to previous work, while reducing area, and capacitors in the modulator prove to be the limiting factor in deep-submicron processes. Area trends are used to construct a roadmap to even smaller pixels. To achieve a faster pixel, a higher-order ΔΣ architecture is exploited.
    [Show full text]
  • An Area Efficient Sub-Threshold Voltage Level Shifter Using a Modified Wilson Current Mirror for Low Power Applications
    An Area Efficient Sub-threshold Voltage Level Shifter using a Modified Wilson Current Mirror for Low Power Applications Biswarup Mukherjee & Aniruddha Ghosal Published online: 22 May 2019. Submit your article to this journal Article views: 12 View Crossmark data An Area Efficient Sub-threshold Voltage Level Shifter using a Modified Wilson Current Mirror for Low Power Applications Biswarup Mukherjee1 and Aniruddha Ghosal2 1Neotia Institute of Technology, Management and Science, Jhinga, Diamond Harbour Road, 24Pgs. (S), West Bengal, India; 2Institute of Radio Physics and Electronics, University of Calcutta, West Bengal, India ABSTRACT KEYWORDS In the present communication, a new technique has been introduced for implementing low-power Current mirror; CAD area efficient sub-threshold voltage level shifter (LS) circuit. The proposed LS circuit consists of only simulation; Level shifter (LS); nine transistors and can operate up to 100 MHz of input frequency successfully. The proposed LS Low power; Sub-threshold is made of single threshold voltage transistors which show least complexity in fabrication and bet- operation; Typical transistor (TT) ter performance in terms of delay analysis and power consumption compared to other available designs. CAD tool-based simulation at TSMC 180 nm technology and comparison between the pro- posed design and other available designs show that the proposed design performs better than other state-of-the-art designs for a similar range of voltage conversion with the most area efficiency. 1. INTRODUCTION are used to reduce the circuit activity or the capacitance value in order to reduce the switching power consump- With the increasing demand of portable devices in elec- tion.
    [Show full text]
  • Overview of CMOS Sensors for Future Tracking Detectors
    instruments Review Overview of CMOS Sensors for Future Tracking Detectors Ricardo Marco-Hernández Instituto de Física Corpuscular (CSIC-UV), 46980 Valencia, Spain; rmarco@ific.uv.es Received: 23 October 2020; Accepted: 27 November 2020; Published: 30 November 2020 Abstract: Depleted Complementary Metal-Oxide-Semiconductor (CMOS) sensors are emerging as one of the main candidate technologies for future tracking detectors in high luminosity colliders. Their capability of integrating the sensing diode into the CMOS wafer hosting the front-end electronics allows for reduced noise and higher signal sensitivity, due to the direct collection of the sensor signal by the readout electronics. They are suitable for high radiation environments due to the possibility of applying high depletion voltage and the availability of relatively high resistivity substrates. The use of a CMOS commercial fabrication process leads to their cost reduction and allows faster construction of large area detectors. In this contribution, a general perspective of the state of the art of CMOS detectors for High Energy Physics experiments is given. The main developments carried out with regard to these devices in the framework of the CERN RD50 collaboration are summarized. Keywords: DMAPS; CMOS; radiation sensors; electronics 1. Introduction Current large pixel detectors in High Energy Physics, such as the ones which will be part of the A Toroidal LHC (Large Hadron Collider) ApparatuS (ATLAS) Tracker Detector [1] or the Compact Muon Solenoid (CMS) Tracker Detector [2] upgrades for the High-Luminosity Large Hadron Collider (HL-LHC), mostly follow a hybrid approach. In a hybrid pixel detector the sensor and the readout electronics are independent devices connected by means of bump-bonding, as can be seen in Figure1.
    [Show full text]
  • A Area VLSI Design (SCL)
    A Area VLSI Design (SCL) A1 Sub Area ASIC Design (SCL) A1.1 Design of Instrumentation Amplifier A High-Precision Instrumentation Amplifier with large CMRR is required for the Sensor Signal conditioning applications. Instrumentation amplifier is a versatile device used for amplification of small differential mode signals while rejecting large common mode signal at the same time. In a typical signal conditioning chain, the output of the sensor goes to the instrumentation amplifier. The instrumentation amplifier amplifies the small output signal of the sensor and gives it to the ADC for digitization. Target Specification: • Supply Voltage: 3.3V • Temperature Range: -40 degC to 125 degC • Programmable Gain: 1 to 1000 • Low noise < 0.3µV p-p at 0.1 Hz to 10 Hz • Low non linearity < 20ppm (Gain = 1) • High CMRR (Common Mode Rejection Ratio) > 90dB (Gain=1) • Low offset voltage < 100µV • 3 dB Bandwidth: 1MHz (at Gain = 1) The design of the proposed Instrumentation Amplifier is to be carried out in SCL 180 nm process. A1.2 Design of a Current Feedback Amplifier (CFA) Opamps come in two types: the voltage-feedback amplifier (VFA), for which the input error is a voltage; and the current-feedback amplifier (CFA), for which the input error is a current. The CFA noninverting amplifier is relatively free from a gain-bandwidth trade-off. Additional advantage of CFAs compared to VFAs is the absence of slew-rate limiting. CFA is primarily used where both high speed and low distortion signal processing is required. CFAs are mainly used in broadcast video systems, radar systems , IF and RF stages and other high speed circuits.
    [Show full text]
  • EP Activity Report 2015
    EUROPRACTICE IC SERVICE THE RIGHT COCKTAIL OF ASIC SERVICES EUROPRACTICE IC SERVICE OFFERS YOU A PROVEN ROUTE TO ASICS THAT FEATURES: · .QYEQUV#5+%RTQVQV[RKPI · (NGZKDNGCEEGUUVQUKNKEQPECRCEKV[HQTUOCNNCPFOGFKWOXQNWOGRTQFWEVKQPSWCPVKVKGU · 2CTVPGTUJKRUYKVJNGCFKPIYQTNFENCUUHQWPFTKGUCUUGODN[CPFVGUVJQWUGU · 9KFGEJQKEGQH+%VGEJPQNQIKGU · &KUVTKDWVKQPCPFHWNNUWRRQTVQHJKIJSWCNKV[EGNNNKDTCTKGUCPFFGUKIPMKVUHQTVJGOQUVRQRWNCT%#&VQQNU · 46.VQ.C[QWVUGTXKEGHQTFGGRUWDOKETQPVGEJPQNQIKGU · (TQPVGPF#5+%FGUKIPVJTQWIJ#NNKCPEG2CTVPGTU +PFWUVT[KUTCRKFN[FKUEQXGTKPIVJGDGPG«VUQHWUKPIVJG'74124#%6+%'+%UGTXKEGVQJGNRDTKPIPGYRTQFWEVFGUKIPUVQOCTMGV SWKEMN[CPFEQUVGHHGEVKXGN[6JG'74124#%6+%'#5+%TQWVGUWRRQTVUGURGEKCNN[VJQUGEQORCPKGUYJQFQP°VPGGFCNYC[UVJG HWNNTCPIGQHUGTXKEGUQTJKIJRTQFWEVKQPXQNWOGU6JQUGEQORCPKGUYKNNICKPHTQOVJG¬GZKDNGCEEGUUVQUKNKEQPRTQVQV[RGCPF RTQFWEVKQPECRCEKV[CVNGCFKPIHQWPFTKGUFGUKIPUGTXKEGUJKIJSWCNKV[UWRRQTVCPFOCPWHCEVWTKPIGZRGTVKUGVJCVKPENWFGU+% OCPWHCEVWTKPIRCEMCIKPICPFVGUV6JKU[QWECPIGVCNNHTQO'74124#%6+%'+%UGTXKEGCUGTXKEGVJCVKUCNTGCF[GUVCDNKUJGF HQT[GCTUKPVJGOCTMGV THE EUROPRACTICE IC SERVICES ARE OFFERED BY THE FOLLOWING CENTERS: · KOGE.GWXGP $GNIKWO · (TCWPJQHGT+PUVKVWVHWGT+PVGITKGTVG5EJCNVWPIGP (TCWPJQHGT++5 'TNCPIGP )GTOCP[ This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement N° 610018. This funding is exclusively used to support European universities and research laboratories. © imec FOREWORD Dear EUROPRACTICE customers, We are at the start of the
    [Show full text]
  • A Survey of Analog-To-Digital Converters for Operation Under Radiation Environments
    electronics Review A Survey of Analog-to-Digital Converters for Operation under Radiation Environments Ernesto Pun-García 1,*,† and Marisa López-Vallejo 2 1 R&D Department, Arquimea Ingeniería SLU, 28918 Leganés, Spain 2 IPTC, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-610-571-208 † Current address: Calle Margarita Salas 10, 28918 Leganés, Madrid, Spain. Academic Editors: Marko Laketic, Paisley Shi and Anna Li Received: 7 September 2020; Accepted: 3 October 2020; Published: 15 October 2020 Abstract: In this work, we analyze in depth multiple characteristic data of a representative population of radenv-ADCs (analog-to-digital converters able to operate under radiation). Selected ADCs behave without latch-up below 50 MeV·cm2/mg and are able to bear doses of ionizing radiation above 50 krad(Si). An exhaustive search of ADCs with radiation characterization data has been carried out throughout the literature. The obtained collection is analyzed and compared against the state of the art of scientific ADCs, which reached years ago the electrical performance that radenv-ADCs provide nowadays. In fact, for a given Nyquist sampling rate, radenv-ADCs require significantly more power to achieve lower effective resolution. The extracted performance patterns and conclusions from our study aim to serve as reference for new developments towards more efficient implementations. As tools for this purpose, we have conceived FOMTID and FOMSET, two new figures of merit to compare radenv-ADCs that consider electrical and radiation performance. Keywords: ADC performance patterns; ADC state of the art; ADC survey; analog-to-digital converters; applications under radiation environments; figure of merit under radiation; radenv-ADC design guidelines; radiation effects; radiation hardening; radiation test methods 1.
    [Show full text]
  • WP Microelectronics and Interconnections
    Advanced European Infrastructures for Detectors at Accelerators FirSecondst Ann Annualual MeMeetingeting: WPWP44 St Statusatus R Reporteport ChrisChristophetophe de LA TA ILdeLE (laCN TailleRS/IN2P(CNRS/IN2P3)3) Valerio RE (INFN ) Valerio Re (INFN/Univ. Bergamo) LPNHE, Paris, April 7, 2017 DESY, Hamburg, June 17, 2016 This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168. WP4: microelectronics and interconnections • WP Coordinators: Christophe de la Taille, Valerio Re • Goal : provide chips and interconnections to detectors developed by other WPs • Task 1: Scientific coordination (CNRS-OMEGA, INFN-UNIBG) • Task 2 : 65 nm chips for trackers (CERN) • Fine pitch, low power, advanced digital processing • Task 3 : SiGe 130nm for calorimeters/gaseous (IN2P3) • Highly integrated charge and time measurement • Task 4 : interconnections between 65 nm chips and pixel sensors (INFN) • TSVs in 65 nm CMOS wafers, bonding of 65 nm chips to sensors, exploration of fine pitch bonding processes AIDA WP4 milestones MS4.1 Architectural review of deliverable chips in 65nm run M14 (accomplished) MS4.2 Final design review of 65nm M30 (October 2017) MS4.3 Test report of deliverable D4.1 M46 (February 2019) MS4.4 Selection of SiGe foundry M14 (accomplished) MS4.5 Final design review of deliverable chips in SiGe run M30 (October 2017) MS4.6 Test report of deliverable D4.2 M46 MS4.7 Selection of TSV process M14 (accomplished) MS4.8 Final design review of deliverable D4.3 (TSV
    [Show full text]
  • Exploring the Ultimate Limits of Adiabatic Circuits
    Special Session: Exploring the Ultimate Limits of Adiabatic Circuits Michael P. Frank Robert W. Brocato Thomas M. Conte Alexander H. Hsia Cognitive & Emerging RF Microsystems Dept. Schools of Computer Science and Sandia National Laboratories Computing Dept. Sandia National Laboratories Electrical & Computer Eng. Albuquerque, NM, USA Sandia National Laboratories Albuquerque, NM, USA Georgia Institute of Technology Albuquerque, NM, USA orcid:0000-0001-9751-1234 Atlanta, GA, USA Requiescat in pace [email protected] [email protected] Anirudh Jain Nancy A. Missert Karpur Shukla Brian D. Tierney School of Computer Science Nanoscale Sciences Department Laboratory for Emerging Radiation Hard CMOS Georgia Institute of Technology Sandia National Laboratories Technologies Technology Dept. Atlanta, GA, USA Albuquerque, NM, USA Brown University Sandia National Laboratories [email protected] orcid:0000-0003-2082-2282 Providence, RI, USA Albuquerque, NM, USA orcid:0000-0002-7775-6979 [email protected] Abstract—The field of adiabatic circuits is rooted in electronics I. INTRODUCTION know-how stretching all the way back to the 1960s and has poten- tial applications in vastly increasing the energy efficiency of far- In 1961, Rolf Landauer of IBM observed that there is a fun- future computing. But now, the field is experiencing an increased damental physical limit to the energy efficiency of logically ir- level of attention in part due to its potential to reduce the vulnera- reversible computational operations, meaning, those that lose bility of systems
    [Show full text]
  • On the Effects of Total Ionizing Dose in Silicon-Germanium Bicmos Platforms
    ON THE EFFECTS OF TOTAL IONIZING DOSE IN SILICON-GERMANIUM BICMOS PLATFORMS A Thesis Presented to The Academic Faculty by Zachary E. Fleetwood In Partial Fulfillment of the Requirements for the Degree Master's Thesis in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2014 Copyright c 2014 by Zachary E. Fleetwood ON THE EFFECTS OF TOTAL IONIZING DOSE IN SILICON-GERMANIUM BICMOS PLATFORMS Approved by: Professor John D. Cressler, Advisor School of Electrical and Computer Engineering Georgia Institute of Technology Professor John Papapolymerou School of Electrical Engineering Georgia Institute of Technology Professor Douglas Yoder School of Electrical Engineering Georgia Institute of Technology Date Approved: 5 Dec 2014 ACKNOWLEDGEMENTS I would first like to thank my research advisor Dr. Cressler. His endless support and encouragement has made me a better researcher and has provided me with the perfect environment to continue my education. I would also like to thank the members of my reading committee: Dr. Papapolymerou and Dr. Yoder. I appreciate their taking the time to provide me with helpful feedback on this thesis in addition to being my teachers at Georgia Tech. I would also like to thank my Mom, Dad, and brothers: Aaron and Nathan. Your support and love over the years means everything to me. I would especially like to thank my father for taking the time to help provide me with feedback on my technical work | you have taught me so much. And I would also like to thank all my friends. Thank you to my Vandy friends Dylan McQuaide and Zac Diggins | I don't know where I would be right now without you guys.
    [Show full text]
  • REPORT Moore's Law & the Value Transistor
    GILDER December 2002 / Vol.VII No.12 TECHNOLOGY Moore’s Law & REPORT The Value Transistor he big foundries, Taiwan Semiconductor Manufacturing Corporation (TSM) and United Microelectronics Corporation (UMC), have curtailed capital Texpenditures and are pushing out adoption dates for 300-mm (diameter) wafer production. The biggest integrated device manufacturers (IDMs), IBM, Intel (INTC), Samsung, and Texas Instruments (TXN), continue to spend on process development and are moving to 300-mm wafers. Conventional wisdom says that as the economy recovers, IDMs will be prepared for the upturn. And foundries, with lagging semicon- ductor processes that produce slower chips at higher costs, will lose market share. In the early days, foundries lagged IDMs by at least a couple of process genera- tions. Then they caught up with the IDMs—introducing large wafers and leading- “I thought Moore’s law edge processes right along with the major IDMs. Now, foundries seem about to fall drove the industry, behind. What is going on? Moore’s law is the rate of semiconductor manufacturing improvement—the num- until Tredennick and ber of transistors in a fixed area doubles every eighteen months. Big chips are more capa- ble; fixed-size functions fit on smaller chips. The magic of Moore’s-law progress comes Shimamoto introduced from three areas. Most important is shrinking transistor size. The second contributor is me to the value increasing chip and wafer size. Third is better circuit design. Chips get faster and cheap- er with manufacturing process improvements. If you find the current chips lacking, wait transistor. Here it is, a generation or two and they’ll have what you need.
    [Show full text]
  • System-On-Chip Design and Test with Embedded Debug Capabilities
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2006 System-on-Chip Design and Test with Embedded Debug Capabilities Tushti Marwah University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Marwah, Tushti, "System-on-Chip Design and Test with Embedded Debug Capabilities. " Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk_gradthes/1734 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Tushti Marwah entitled "System-on-Chip Design and Test with Embedded Debug Capabilities." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering. Donald W. Bouldin, Major Professor We have read this thesis and recommend its acceptance: Syed Islam, Mohammed Ferdjallah Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Tushti Marwah entitled “System-on- Chip Design and Test with Embedded Debug Capabilities.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science, with a major in Electrical Engineering.
    [Show full text]
  • Silicon Bicmos the Optimal Technology for RF Power Peter Gammel, Ph.D
    WHITE PAPER enabling wireless multimedia® John Brewer, Jr. Vice President, Corporate and Business Development Silicon BiCMOS The Optimal Technology for RF Power Peter Gammel, Ph.D. Chief Technology Officer Vice President, Engineering The debate over GaAs versus CMOS has been reinvigorated by recent industry events. This includes the sale of CMOS cellular power amplifier (PA) house Axiom Microdevices to GaAs cellular PA manufacturer Skyworks as Introduction well as the emergence from “stealth mode” of CMOS cellular PA startups Black Sand Technologies and Javelin Semiconductor. In terms of market As wireless connectivity continues share, since TRW Semiconductor paired with RF Micro Devices in the mid- the evolution towards becoming one to-late 1990s, the GaAs heterojunction bipolar transistor (HBT) has been the of the core utilities in our daily lives, the demand for increasing standard bearer for mobile phone PA performance, cost, and performance and ease of integration manufacturability. GaAs houses that design, manufacture and package their into consumer and industrial own PAs and other RF components dominate today’s cellular power products drives the RF front end amplifier market. industry. Demand for RF front ends in consumer devices alone doubles However, as has been the case in the semiconductor industry since its from three to six billion units during inception, all roads lead to silicon because it repeatedly proves to offer the the next three years. The optimal combination of performance, cost, functional integration, and semiconductor technologies used to manufacturability for digital and analog integrated circuits. Historically, RF manufacture RF front ends in such circuitry has not been integrated in silicon.
    [Show full text]