electronics Review A Survey of Analog-to-Digital Converters for Operation under Radiation Environments Ernesto Pun-García 1,*,† and Marisa López-Vallejo 2 1 R&D Department, Arquimea Ingeniería SLU, 28918 Leganés, Spain 2 IPTC, ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
[email protected] * Correspondence:
[email protected]; Tel.: +34-610-571-208 † Current address: Calle Margarita Salas 10, 28918 Leganés, Madrid, Spain. Academic Editors: Marko Laketic, Paisley Shi and Anna Li Received: 7 September 2020; Accepted: 3 October 2020; Published: 15 October 2020 Abstract: In this work, we analyze in depth multiple characteristic data of a representative population of radenv-ADCs (analog-to-digital converters able to operate under radiation). Selected ADCs behave without latch-up below 50 MeV·cm2/mg and are able to bear doses of ionizing radiation above 50 krad(Si). An exhaustive search of ADCs with radiation characterization data has been carried out throughout the literature. The obtained collection is analyzed and compared against the state of the art of scientific ADCs, which reached years ago the electrical performance that radenv-ADCs provide nowadays. In fact, for a given Nyquist sampling rate, radenv-ADCs require significantly more power to achieve lower effective resolution. The extracted performance patterns and conclusions from our study aim to serve as reference for new developments towards more efficient implementations. As tools for this purpose, we have conceived FOMTID and FOMSET, two new figures of merit to compare radenv-ADCs that consider electrical and radiation performance. Keywords: ADC performance patterns; ADC state of the art; ADC survey; analog-to-digital converters; applications under radiation environments; figure of merit under radiation; radenv-ADC design guidelines; radiation effects; radiation hardening; radiation test methods 1.