Nitrogen Capture Anthony S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit / Unidad 9
UNIT / UNIDAD 9 GRAMMAR PRACTICE / PRÁCTICA DE GRAMÁTICA Actividad 1 1. My name is Michael. I __was born__ in Liverpool but at the moment I __am living__ in London. Sometimes I __work__ inside and sometimes outside. I often __drive__ a car or a motorbike. I __wear__ a uniform. At the moment I __am walking__ down the street because there __was__ a phone call a quarter of an hour ago about some people who __were__ in a bar making a lot of trouble. I __don’t earn__ a lot of money but I __like__ my job. 2. What is his job? He is a policeman Actividad 2 Nefertiti / artist? Was Nefertiti an artist? No, she wasn’t. She was a queen Beethoven / Germany? Was Beethoven born in Germany? Yes, he was 1. Picasso/composer? Was Picasso a composer? No, he wasn’t. He was a painter 2. Paul Newman/writer? Was Paul Newman a writer? No, he wasn’t. He was an actor 3. Nelson Mandela/Gandhi/politicians? Were Nelson Mandela and Gandhi politicians? Yes, they were 4. The Beatles/actors? Were The Beatles actors? No, they weren’t. They were singers 5. Pele/Argentina? Was Pele from Argentina? No, he wasn’t. He was from brazil Actividad 3 1. Where were you born? I was born … in Lisbon 2. What is your job? I am a … teacher 3. How old were you on your last birthday? I was … forty-three 4. What would you like to do at the weekend? I would like to … go to the beach 1 5. -
Friedrich Bergius – Chemist, Pioneering Researcher and Nobel Prize Laureate
Friedrich Bergius – chemist, pioneering researcher and Nobel Prize laureate Friedrich Bergius (born 1884 in Goldschmieden, Silesia; died 1949 in Buenos Aires) was a chemist and Nobel Prize laureate. He worked for one of the predecessor companies of Evonik from 1914 to 1918, including as a member of the executive board of Th. Goldschmidt AG from 1916 to 1918. In 1931, Friedrich Bergius received the Nobel Prize for Chemistry jointly with Carl Bosch "in recognition of their contributions to the invention and development of chemical high- Friedrich Bergius pressure methods." Thanks to his pioneering basic research, Friedrich Bergius is now considered one of the most important German chemists of the 20th century. His research continues to influence some of the chemicals produced at Evonik to this day. Bergius began his studies of chemistry in Breslau in 1903 and completed his doctoral studies in Leipzig in 1907. Reflecting the influence of Nobel laureate Fritz Haber, his professorial thesis was entitled "Application of high pressure in chemical processes and simulation of the genesis of coal." Written at the dawn of the automotive and aerospace age, Bergius’ work turned out to be prescient. He believed to have found a way to "liquidize" the rich coal deposits in Germany under high pressure to turn them into gasoline. Since Karl Goldschmidt, the chairman of the Th. Goldschmidt AG executive board, shared the conviction that gasoline would dominate the future, he provided Bergius with the means to implement his findings on an industrial scale. In 1913, Bergius therefore came to Essen, where he was appointed the head of research in a new, specially built laboratory and advanced to deputy member of the executive board of Th. -
List of Nobel Laureates 1
List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize. -
UNITED STATES NITRATE PLANT NUMBER Tennessee Valley
UNITED STATES NITRATE PLANT NUMBER KAER No. AL-46 Tennessee Valley Authority Reservation Road Muscle Shoals Colbert County Alabama ALA PHOTOGRAPHS REDUCED COPIES OF MEASURED DRAWINGS WRITTEN HISTORICAL & DESCRIPTIVE DATA Historic American Engineering Record National Park Service Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD UNITED STATES NITRATE PLANT NUMBER 2 HAER No. AL-46 Location: Reservation Road, Muscle Shoals Alabama tut )7. Date of Construction: 1918 I- Designer/Engineer: Air Nitrate Corporation Builder/Fabricator: Westinghouse, Church, & Kerr Company Present Owner: Tennessee Valley Authority Present Use: Environment Research Center Significance: Production of Ammonium Nitrate Project Information: This recording project is part of the Historic American Engineering Record (HAER), a long range program to document the engineering industrial and transportation heritage of the United States. The HAER program is administered by the Historic American Buildings Survey/Historic American Engineering Record (HABS/HAER) Division of the National Park Service, U.S. Department of the Interior. The Tennessee Valley Authority-Muscle Shoals Recording Project was cosponsored during the summer of 1994 by HAER under the general direction of Robert J. Kapsch, Chief of HABS/HAER and by the Tennessee Valley Authority with the staff of the Tennessee Valley Authority's Environmental Research Center, Muscle Shoals, Alabama. The field work, measured drawings, historical report, and photographs were prepared under the direction of Eric N. De Lony, Chief of HAER and Project Leader; Richard O'Connor, Project Historian; Jet Lowe, HAER Photographer; and Craig N. Strong, Project Architect. The recording team consisted of Tom Behrens, Field Supervisor; Balazs Krikovszky (ICOMOS) and Sergio Sanchez, Architects and Susie B. -
Historical Group
Historical Group OCCASIONAL PAPERS No 7 Nitrogen, Novel High-Pressure Chemistry, and the German War Effort (1900-1918) Anthony S. Travis (Sidney M. Edelstein Center for the History and Philosophy of Science, Technology and Medicine, The Hebrew University of Jerusalem) The Seventh Wheeler Lecture Royal Society of Chemistry, 22 October 2014 April 2015 Introduction “The story still is told of a Minister, a member of the War Cabinet, who, finding the conversation at a certain dinner turning to the sinister menace of the submarine campaign, then at its height, and its effects especially on the Chile communications, turned to his neighbour with the enquiry: ‘Tell me, what is this nitrate they are all making such a fuss about?’” Stanley I. Levy, “The Status of Chemists and Chemistry”, in Chemistry and Industry, no. 11 (14 March 1924): 285-6. Apocryphal or not, this extract from the correspondence columns of the then new British journal Chemistry and Industry in 1924 exposes the apparent general ignorance in Britain, and also for a time in Germany, of a crucial and even desperate episode in the conduct of what became known as the First Great War. “Nitrate”, a commodity essential to the production of modern explosives employed in warfare, mainly aromatic nitro compounds such as TNT and picric acid, was common currency to all belligerents. Nevertheless outside of scientific and industrial circles the critical roles of what was in fact Chilean nitrate (Chilean saltpetre, or sodium nitrate), extracted from the mineral caliche, and the other nitrogen-containing chemicals of commerce, such as calcium cyanamide and ammonia, as sources of vast destructive power, was generally given little, if any, prominence at the start of the war in early August 1914. -
Heidelberg Nobel Prize Winners
Heidelberg Nobel Prize Winners Christoph Mager bert Bunsen in Heidelberg and Hermann thesising fuel from carbon liquefi ed at ᕡ The Nobel Prize von Helmholtz in Berlin. After spend- high temperatures and pressures. After ing time in Breslau (Wrocław) and Kiel, studying under the Nobel Prize winners The Nobel Prize is the world’s most fa- he was appointed professor at the De- Walter Nernst and Fritz Haber, in the mous and most coveted award. Founded by the Swedish industrialist Alfred Nobel partment of Physics and Radiology in 1920s Bergius set up a carbon chemistry (1833-1895), since 1901 the prizes have Heidelberg, where he remained until his laboratory in the vicinity of BASF in been awarded in the fi ve categories che- retirement in 1931 ᕢ. From around Ludwigshafen. The award winning mistry, physiology or medicine, physics, li- 1908, with his “Deutsche Physik” he work of Carl Bosch was the implemen- terature, and peace. According to Nobel’s openly opposed modern theoretical tation of the high pressure synthesis of testament wishes, the prize is to be awar- work, such as that of Albert Einstein, ammonia, which is used as the basis of ded annually to the person “who, during which he condemned as “Jewish”. After fertiliser and explosives. After his doc- the preceding year, shall have conferred the greatest benefi t on mankind.“ In World War II, his involvement in Na- torate in 1899 he moved to BASF awarding the Nobel Prizes “no considera- tional Socialism was not punished on where he gradually withdrew from ac- tion whatever shall be given to the natio- the grounds of his age. -
Friedrich Bergius and the Rise of the German Synthetic Fuel Industry
Friedrich Bergius and the Rise of the German Synthetic Fue nI ustry By Anthony N. Stranges* G ERMANY HAS VIRTUALLY NO petroleumdeposits. Prior to the twen- tieth century that lack of a liquid fuel was not a serious problem, because Germany possessed abundantcoal reserves. Coal provided for commercial and home heating; it also fulfilled the needs of industryand the military,particularly the navy. In the first decade of the twentieth century, Germany's energy requirements began to change. Two reasons were especially important. First, Germany be- came increasinglydependent on gasoline and diesel oil engines. The appearance of automobiles, trucks, and then airplanes made a plentiful supply of gasoline absolutely essential; moreover, ocean-going ships increasingly used diesel oil rather than coal as their energy source. Second, Germany's continuing indus- trialization and urbanizationmagnified the shortcomings of coal as an energy source. German scientists and engineers began to replace coal with smokeless liquid fuels, which not only were cleaner burningand more convenient to handle but also had a higher energy content. Petroleumwas clearly the fuel of the future, and to insure that Germanywould never be without it, her scientists and engineers created a domestic source of that fuel. From a plentiful natural substance, coal, they synthesized petroleum. Of the several processes the Germansused to convert coal into petroleum, high- pressure coal hydrogenationwas the most highly advanced. Its history falls into two broad periods: 1910-1925, duringwhich time its inventor, FriedrichBergius (1884-1949) developed the process through the first stages of industrialization, and 1925-1945, the period of its further commercial development by German industrialists. -
Friedrich Bergius
F RIEDRICH B ERGIUS Chemical reactions under high pressure Nobel Lecture, May 21, 1932 Since the Royal Swedisch Academy of Sciences has considered my work on the development of high pressure methods for chemical reactions, and in particular work on the hydrogenation of heavy hydrocarbons and coal, to be worthy of the Nobel Prize, I wish to combine my gratitude for the high honour bestowed upon me with a report on the development of these system- atic investigations and chemical researches to which my academic and indus- trial activities have been mainly devoted for almost 20 years. The success of the first experiments with the high-pressure hydrogenation of oil and coal in the years 1912 and 1913 was due to the fact that the laboratory which I directed at that time in Hannover had already developed a method which permitted the conduct of a wide range of reactions in relatively easily operated apparatus at pressures up to about 300 atm and temperatures up to 450 o. In 1908 and 1909 I was given an opportunity in the laboratories of Nernst and Haber to witness the use of the high-pressure methods in investigations into the ammonia equilibrium and ammonia synthesis, and I tried my hand, in these laboratories, at that time, at syntheses by high-pressure techniques, with the then imperfect apparatuses, and with little success. When, in 1909, I joined the physical-chemical laboratory of Hanover In- stitute of Technology led by Bodenstein, I decided to take up work on this new field which appeared promising to me on a wider scale, and developed, first in the laboratory of the Institute, and then in my own, relatively well- equipped private laboratory, assisted by several colleagues, of whom I would specially mention Hugo Specht, the methods and apparatus for investigating a number of diverse high-pressure reactions in the course of the years. -
UNITED STATES NITRATE PLANT NUMBER KAER No
UNITED STATES NITRATE PLANT NUMBER KAER No. AL-46 Tennessee Valley Authority Reservation Road Muscle Shoals Colbert County Alabama ALA PHOTOGRAPHS REDUCED COPIES OF MEASURED DRAWINGS WRITTEN HISTORICAL & DESCRIPTIVE DATA Historic American Engineering Record National Park Service Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD UNITED STATES NITRATE PLANT NUMBER 2 HAER No. AL-46 Location: Reservation Road, Muscle Shoals Alabama tut )7. Date of Construction: 1918 I- Designer/Engineer: Air Nitrate Corporation Builder/Fabricator: Westinghouse, Church, & Kerr Company Present Owner: Tennessee Valley Authority Present Use: Environment Research Center Significance: Production of Ammonium Nitrate Project Information: This recording project is part of the Historic American Engineering Record (HAER), a long range program to document the engineering industrial and transportation heritage of the United States. The HAER program is administered by the Historic American Buildings Survey/Historic American Engineering Record (HABS/HAER) Division of the National Park Service, U.S. Department of the Interior. The Tennessee Valley Authority-Muscle Shoals Recording Project was cosponsored during the summer of 1994 by HAER under the general direction of Robert J. Kapsch, Chief of HABS/HAER and by the Tennessee Valley Authority with the staff of the Tennessee Valley Authority's Environmental Research Center, Muscle Shoals, Alabama. The field work, measured drawings, historical report, and photographs were prepared under the direction of Eric N. De Lony, Chief of HAER and Project Leader; Richard O'Connor, Project Historian; Jet Lowe, HAER Photographer; and Craig N. Strong, Project Architect. The recording team consisted of Tom Behrens, Field Supervisor; Balazs Krikovszky (ICOMOS) and Sergio Sanchez, Architects and Susie B. -
Nobel Prizes List from 1901
Nature and Science, 4(3), 2006, Ma, Nobel Prizes Nobel Prizes from 1901 Ma Hongbao East Lansing, Michigan, USA, Email: [email protected] The Nobel Prizes were set up by the final will of Alfred Nobel, a Swedish chemist, industrialist, and the inventor of dynamite on November 27, 1895 at the Swedish-Norwegian Club in Paris, which are awarding to people and organizations who have done outstanding research, invented groundbreaking techniques or equipment, or made outstanding contributions to society. The Nobel Prizes are generally awarded annually in the categories as following: 1. Chemistry, decided by the Royal Swedish Academy of Sciences 2. Economics, decided by the Royal Swedish Academy of Sciences 3. Literature, decided by the Swedish Academy 4. Peace, decided by the Norwegian Nobel Committee, appointed by the Norwegian Parliament, Stortinget 5. Physics, decided by the Royal Swedish Academy of Sciences 6. Physiology or Medicine, decided by Karolinska Institutet Nobel Prizes are widely regarded as the highest prize in the world today. As of November 2005, a total of 776 Nobel Prizes have been awarded, 758 to individuals and 18 to organizations. [Nature and Science. 2006;4(3):86- 94]. I. List of All Nobel Prize Winners (1901 – 2005): 31. Physics, Philipp Lenard 32. 1906 - Chemistry, Henri Moissan 1. 1901 - Chemistry, Jacobus H. van 't Hoff 33. Literature, Giosuè Carducci 2. Literature, Sully Prudhomme 34. Medicine, Camillo Golgi 3. Medicine, Emil von Behring 35. Medicine, Santiago Ramón y Cajal 4. Peace, Henry Dunant 36. Peace, Theodore Roosevelt 5. Peace, Frédéric Passy 37. Physics, J.J. Thomson 6. Physics, Wilhelm Conrad Röntgen 38. -
Nobel Laureates in Chemistry 1901-1992
Nobel Laureates in Chemistry 1901-1992 Laylin K. James, EDITOR Lafayette College History of Modern Chemical Sciences Jeffrey L. Sturchio, SERIBS EDITOR Merck & Co., Inc. 1993 American Chemical Society and the Chemical Heritage Foundation Contents Preface xv 1901 Jacobus van't Hoff 1 1902 Emil Fischer 8 1903 Svante Arrhenius 15 1904 William Ramsay 23 1905 Adolf von Baeyer 30 1906 Henri Moissan 35 1907 Eduard Buchner 42 1908 Ernest Rutherford 49 1909 Wilhelm Ostwald 61 1910 Otto Wallach 69 1911 Marie Curie 75 1912 Victor Grignard 83 1912 Paul Sabatier 88 1913 Alfred Werner 93 1914 Theodore William Richards 100 1915 Richard Martin Willstätter 108 1918 Fritz Haber 114 1920 Walther Hermann Nernst 125 1921 Frederick Soddy 134 1922 Francis William Aston 140 1923 Fritz Pregl 146 1925 Richard Zsigmondy 151 1926 The Svedberg 158 1927 Heinrich Wieland 164 1928 Adolf Windaus 169 1929 Hans von Euler-Chelpin 175 1929 Arthur Harden 181 1930 Hans Fischer 187 1931 Friedrich Bergius 192 1931 Carl Bosch 198 1932 Irving Langmuir 205 xi IIX öit' Mqn pjEim 096i 31t Ä>[SAOJÄ3H ABJSCXref 6561 9017 aaSues sptrapay 8S6T 66£ PP°1 smiaqoy japuexajv Z.S61 £6£ AOU9UI3S ipiASÄEJO^IJSI A?l05l!N 9S61 98e pooAvpusuiH IHÄ3 956T 08e pncauSiA HQ JUMUIA gg6I 89e SmpiBd pro snutq frS6I 6S€ jaSuiptiBjs UUBUU9H £S6I 95£ 3§uħ UOJ§UIJ|IJAJ aDuamtq pjEipr^j ^S6I 3S£ UUJEy\[ J3WOJ Uqof J311DJV 3S61 frK SaoqT^s uua^ ;g6t 8ee UBflWW uiAvpg IS6T 3ee SPKI ««B«U3H inEd °»o os6i 83£ J3PIV wn^ os6i 13€ anbnuiQ SIDUBJJ ureini^ 6t^6l Sie s™ps!l 3UJV 8fr6I 90e uosutqotf uaqotf Z.^61 00£ Asprejs -
Nobel Laureates in Chemistry and Physics
NOBEL LAUREATES IN CHEMISTRY AND PHYSICS Full details on nationality and basis of the awards can be found at <nobelprize .org/> . Chemistry 2008 Martin Chalfie, Osamu Shimomura, Roger Y . Tsien 1954 Linus Pauling 2007 Gerhard Ertl 1953 Hermann Staudinger 2006 Roger D . Kornberg 1952 Archer J .P . Martin, Richard L .M . Synge 2005 Yves Chauvin, Robert H . Grubbs, Richard R . Schrock 1951 Edwin M . McMillan, Glenn T . Seaborg 2004 Aaron Ciechanover, Avram Hershko, Irwin Rose 1950 Otto Diels, Kurt Alder 2003 Peter Agre, Roderick MacKinnon 1949 William F . Giauque 2002 John B . Fenn, Koichi Tanaka, Kurt Wüthrich 1948 Arne Tiselius 2001 William S . Knowles, Ryoji Noyori, K . Barry Sharpless 1947 Sir Robert Robinson 2000 Alan Heeger, Alan G . MacDiarmid, Hideki Shirakawa 1946 James B . Sumner, John H . Northrop, Wendell M . Stanley 1999 Ahmed Zewail 1945 Artturi Virtanen 1998 Walter Kohn, John Pople 1944 Otto Hahn 1997 Paul D . Boyer, John E . Walker, Jens C . Skou 1943 George de Hevesy 1996 Robert F . Curl Jr ., Sir Harold Kroto, Richard E . Smalley 1942 No prize awarded 1995 Paul J . Crutzen, Mario J . Molina, F . Sherwood Rowland 1941 No prize awarded 1994 George A . Olah 1940 No prize awarded 1993 Kary B . Mullis, Michael Smith 1939 Adolf Butenandt, Leopold Ruzicka 1992 Rudolph A . Marcus 1938 Richard Kuhn 1991 Richard R . Ernst 1937 Norman Haworth, Paul Karrer 1990 Elias James Corey 1936 Peter Debye 1989 Sidney Altman, Thomas R . Cech 1935 Frédéric Joliot, Irène Joliot-Curie 1988 Johann Deisenhofer, Robert Huber, Hartmut Michel 1934 Harold C . Urey 1987 Donald J . Cram, Jean-Marie Lehn, Charles J .