Inorganic Chemistry, Harvey Mudd College, Spring 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
..f.,5$1______ -~ survey -------) WHO WAS WHO IN KINETICS, REACTION ENGINEERING, AND CATALYSIS CAMI L. JACKSON AND JOSEPH H . HOLLES University of liyoming • Laramie, WY 82071 n the tradition of "Who was Who in Transport Phenom We have tried to include the names that are encountered ena" by Byron Bird in Chemical Engineering Education,CI J frequently in textbooks for both undergraduates and gradu Iwe have developed a similar set of microbiographies for ates (by noted authors such as Levenspiel, Hill, Fogler, and persons in the fields of kinetics, reaction engineering, and Froment and Bischoff). Again, we follow Bird's lead and do catalysis. As noted by Bird, an otherwise typical lecture not include these people simply for authoring books in these can be enlivened by presenting biographical information fields . We do, however, include-where appropriate- famous about the people whose names appear in famous equations, texts written by those scientists and engineers included for dimensionless groups, plots, approximations, and theories . other reasons. We have tried to focus on those persons who The wide variety of applications for this type of information contributed to the science of a field and not just contributed to has been demonstrated by using activity breaks to teach the a specific reaction or system (e.g., Haber and Bosch). While history of our professionl21 and as trading card rewards for contributions to specific reactions or systems are important, academic performance _l31 we elected not to include them in order to limit the scope of With the introduction and widespread acceptance ofWiki the project. Finally, we have tried to include interesting non pedia, basic biographical information on many of the early technical or non-professional information where possible to contributors to the profession of chemical engineering can be show the breadth of these individuals. -
Unit / Unidad 9
UNIT / UNIDAD 9 GRAMMAR PRACTICE / PRÁCTICA DE GRAMÁTICA Actividad 1 1. My name is Michael. I __was born__ in Liverpool but at the moment I __am living__ in London. Sometimes I __work__ inside and sometimes outside. I often __drive__ a car or a motorbike. I __wear__ a uniform. At the moment I __am walking__ down the street because there __was__ a phone call a quarter of an hour ago about some people who __were__ in a bar making a lot of trouble. I __don’t earn__ a lot of money but I __like__ my job. 2. What is his job? He is a policeman Actividad 2 Nefertiti / artist? Was Nefertiti an artist? No, she wasn’t. She was a queen Beethoven / Germany? Was Beethoven born in Germany? Yes, he was 1. Picasso/composer? Was Picasso a composer? No, he wasn’t. He was a painter 2. Paul Newman/writer? Was Paul Newman a writer? No, he wasn’t. He was an actor 3. Nelson Mandela/Gandhi/politicians? Were Nelson Mandela and Gandhi politicians? Yes, they were 4. The Beatles/actors? Were The Beatles actors? No, they weren’t. They were singers 5. Pele/Argentina? Was Pele from Argentina? No, he wasn’t. He was from brazil Actividad 3 1. Where were you born? I was born … in Lisbon 2. What is your job? I am a … teacher 3. How old were you on your last birthday? I was … forty-three 4. What would you like to do at the weekend? I would like to … go to the beach 1 5. -
Friedrich Bergius – Chemist, Pioneering Researcher and Nobel Prize Laureate
Friedrich Bergius – chemist, pioneering researcher and Nobel Prize laureate Friedrich Bergius (born 1884 in Goldschmieden, Silesia; died 1949 in Buenos Aires) was a chemist and Nobel Prize laureate. He worked for one of the predecessor companies of Evonik from 1914 to 1918, including as a member of the executive board of Th. Goldschmidt AG from 1916 to 1918. In 1931, Friedrich Bergius received the Nobel Prize for Chemistry jointly with Carl Bosch "in recognition of their contributions to the invention and development of chemical high- Friedrich Bergius pressure methods." Thanks to his pioneering basic research, Friedrich Bergius is now considered one of the most important German chemists of the 20th century. His research continues to influence some of the chemicals produced at Evonik to this day. Bergius began his studies of chemistry in Breslau in 1903 and completed his doctoral studies in Leipzig in 1907. Reflecting the influence of Nobel laureate Fritz Haber, his professorial thesis was entitled "Application of high pressure in chemical processes and simulation of the genesis of coal." Written at the dawn of the automotive and aerospace age, Bergius’ work turned out to be prescient. He believed to have found a way to "liquidize" the rich coal deposits in Germany under high pressure to turn them into gasoline. Since Karl Goldschmidt, the chairman of the Th. Goldschmidt AG executive board, shared the conviction that gasoline would dominate the future, he provided Bergius with the means to implement his findings on an industrial scale. In 1913, Bergius therefore came to Essen, where he was appointed the head of research in a new, specially built laboratory and advanced to deputy member of the executive board of Th. -
Articles – Part 1: Principle of Measurements and Instrument Evaluation
Atmos. Meas. Tech., 9, 1721–1742, 2016 www.atmos-meas-tech.net/9/1721/2016/ doi:10.5194/amt-9-1721-2016 © Author(s) 2016. CC Attribution 3.0 License. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: Principle of measurements and instrument evaluation Jean-Baptiste Renard1, François Dulac2, Gwenaël Berthet1, Thibaut Lurton1, Damien Vignelles1, Fabrice Jégou1, Thierry Tonnelier3, Matthieu Jeannot1,4, Benoit Couté1, Rony Akiki3, Nicolas Verdier5, Marc Mallet6, François Gensdarmes7, Patrick Charpentier8, Samuel Mesmin8, Vincent Duverger1, Jean-Charles Dupont9, Thierry Elias10, Vincent Crenn2, Jean Sciare2, Paul Zieger11, Matthew Salter11, Tjarda Roberts1, Jérôme Giacomoni4, Matthieu Gobbi4, Eric Hamonou2, Haraldur Olafsson12, Pavla Dagsson-Waldhauserova12,13, Claude Camy-Peyret14, Christophe Mazel15, Thierry Décamps15, Martin Piringer16, Jérémy Surcin1, and Daniel Daugeron17 1LPC2E-CNRS, Université d’Orléans, 3A Avenue de la Recherche Scientifique, 45071 Orléans, France 2LSCE-CEA, Institut Pierre Simon Laplace, CEA Saclay 701, 91191 Gif-sur-Yvette, France 3Environnement-SA, 111 Boulevard Robespierre, BP 4513, 78304, Poissy, France 4Groupe Aerophile, 106 Avenue Felix Faure, 75015 Paris, France 5Centre National d’Etudes Spatiales (CNES), DCT/BL/NB, 18 Avenue Edouard Belin, 31401 Toulouse CEDEX 9, France 6Laboratoire d’Aérologie, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France 7Institut de Radioprotection et de -
THE WORLD's Most Influential Scientific Minds 2014
ONY GENTILE T S/ R REUTE THE WORLD’S MOST INFLUENTIAL SCIENTIFIC MINDS 2014 “ Research is to see what everybody else has seen, and to think what nobody else has thought.” — Albert Szent-Gyorgyi (1893 – 1986) Physiologist and Nobel Prize recipient Cover Image: The sun is viewed through a telescope at the Vatican Observatory in Castelgandolfo, south of Rome, June 23, 2005. In the sleepy lakeside village of Castelgandolfo, away from the noise and haste of Rome, the Vatican is helping to train tomorrow’s astronomers, regardless of their religious beliefs. For the past 20 years, the Vatican Observatory, one of the world’s oldest astronomical institutes, has selected young, promising scholars for courses at the papal summer palace. INtrodUCTION Who are some of the best and brightest scientific minds of our time? Thomson Reuters answers this question, as it has The second section of researchers lists some in the past, by analyzing data using its Web of 3,200 individuals who published the greatest Science and InCites platforms to determine which number of highly cited papers in one of 21 broad researchers have produced work that is most fields, 2002-2012. Highly cited papers rank in frequently acknowledged by peers. the top 1% by citations for their field and year of publication. Both hot papers and highly cited These highly cited researchers were determined papers are featured in the Essential Science by analyzing at citation data over the last 11 years Indicators database of Thomson Reuters. to identify those who published the highest- impact work (2002—2012 and 2012—2013). -
Organometallic Chemistry and Applications
Chemistry 462 Fall 2017 MYD Organometallic Chemistry and Applications Note: Organometallic Compounds and Complexes Contain a M-C Bond. Organometallic chemistry timeline 1760 Louis Claude Cadet de Gassicourt investigates inks based on cobalt salts and isolates Cacodyl from cobalt mineral containing arsenic 1827 William Christopher Zeise produces Zeise's salt; the first platinum / olefin complex 1848 Edward Frankland discovers diethylzinc 1863 Charles Friedel and James Crafts prepare organochlorosilanes 1890 Ludwig Mond discovers nickel carbonyl 1899 Introduction of Grignard reaction 1899 John Ulric Nef discovers alkylation using sodium acetylides. 1900 Paul Sabatier works on hydrogenation of organic compounds with metal catalysts. Hydrogenation of fats kicks off advances in food industry; see margarine! 1909 Paul Ehrlich introduces Salvarsan for the treatment of syphilis, an early arsenic based organometallic compound 1912 Nobel Prize Victor Grignard and Paul Sabatier 1930 Henry Gilman works on lithium cuprates, see Gilman reagent 1951 Walter Hieber was awarded the Alfred Stock prize for his work with metal carbonyl chemistry—(but not the Nobel Prize). 1951 Ferrocene is discovered 1963 Nobel prize for Karl Ziegler and Giulio Natta on Ziegler-Natta catalyst: Polymerization of olefins 1965 Discovery of cyclobutadieneiron tricarbonyl 1968 Heck reaction 1973 Nobel prize Geoffrey Wilkinson and Ernst Otto Fischer on sandwich compounds 1981 Nobel prize Roald Hoffmann and Kenichi Fukui for expression of the Woodward-Hoffman Rules 2001 Nobel prize W. S. Knowles, R. Noyori and Karl Barry Sharpless for asymmetric hydrogenation 2005 Nobel prize Yves Chauvin, Robert Grubbs, and Richard Schrock on metal-catalyzed alkene metathesis 2010 Nobel prize Richard F. Heck, Ei-ichi Negishi, Akira Suzuki for palladium catalyzed cross coupling reactions The following slides are meant merely as examples of the catalytic processes we will explore later this semester. -
List of Nobel Laureates 1
List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize. -
Lista Över Nobelpristagare
Fysiologi SNo År Fysik Kemi eller Litteratur Fred Ekonomi medicin Wilhelm Jacobus Emil von Sully Henry Dunant; 1 1901 Conrad Henricus van 't Behring Prudhomme Frédéric Passy Röntgen Hoff Hendrik Hermann Emil Theodor Élie Ducommun; 2 1902 Lorentz; Ronald Ross Fischer Mommsen Albert Gobat Pieter Zeeman Henri Becquerel; Svante Niels Ryberg Bjørnstjerne 3 1903 Randal Cremer Pierre Curie; Arrhenius Finsen Bjørnson Marie Curie Frédéric Ivan William Mistral; Institut de droit 4 1904 Lord Rayleigh Petrovich Ramsay José international Pavlov Echegaray Adolf von Henryk 5 1905 Philipp Lenard Robert Koch Bertha von Suttner Baeyer Sienkiewicz Camillo Golgi; Giosuè 6 1906 J. J. Thomson Henri Moissan Santiago Theodore Roosevelt Carducci Ramón y Cajal Albert A. Alphonse Rudyard Ernesto Moneta; 7 1907 Eduard Buchner Michelson Laveran Kipling Louis Renault Ilya Ilyich Rudolf Gabriel Ernest Klas Pontus Arnoldson; 8 1908 Mechnikov; Christoph Lippmann Rutherford Fredrik Bajer Paul Ehrlich Eucken Ferdinand Auguste Beernaert; Braun; Wilhelm Theodor Selma 9 1909 Paul Henri d'Estournelles Guglielmo Ostwald Kocher Lagerlöf de Constant Marconi Johannes Albrecht 10 1910 Diderik van Otto Wallach Paul Heyse International Peace Bureau Kossel der Waals Tobias Michael Carel Allvar Maurice 11 1911 Wilhelm Wien Marie Curie Asser; Gullstrand Maeterlinck Alfred Fried Victor Grignard; Gerhart 12 1912 Gustaf Dalén Alexis Carrel Elihu Root Paul Sabatier Hauptmann Heike Charles Rabindranath 13 1913 Kamerlingh Alfred Werner Henri La Fontaine Richet Tagore Onnes Theodore Robert -
Rutherford and the Nuclear Atom
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER V OLUME 5 1 N UMBER 4 M AY 2 0 1 1 Rutherford and the nuclear atom QED TECHNOLOGY PHYSICS IN Studying strong Unravelling a story fi elds in crystal of sparkling THE ALPS targets spin-off News from the Rencontres p15 p18 de Moriond 2011 p25 CCMay11-Cover.indd 1 12/04/2011 18:01 Instrumentation Technologies Libera Hadron Hadron beam position processor High-resolution measurements for circular You also benefit from: • Large playground for custom-written applications: hadron machines. Virtex™ 5, COM Express Basic module Basic features: • More space: up to 16 input channels to simultaneously • High-resolution single bunch position measurements acquire the position from 8 BPM planes in one chassis • Single bunch precise charge measurements • Two year hardware warranty with the option for an • Turn-by-turn, high resolution beam position and charge extension measurements • Slow acquisition streaming beam position measurements Typical Performance Advanced features: • High resolution single bunch arrival time measurements Single bunch resolution Turn-by-turn resolution • Fast acquisition: very high resolution beam position below 5 um RMS (2 Vp-p, below 1 um RMS (2 Vp-p, 80 kHz measurements and 10 kHz rate streaming on a dedicated 106 ns repetition rate) revolution frequency) output for fast feedback purposes • Bunch map and bunch fill pattern measurements • Implementation of low-latency multi-bunch instability Combine Libera Hadron with Libera Single Pass H and feedback systems Libera LLRF and further improve beam stability! Request the Promo unit and purchase your first Libera Hadron at a discounted price, including the money-back warranty option at [email protected]! www.i-tech.si Many instruments. -
24 August 2013 Seminar Held
PROCEEDINGS OF THE NOBEL PRIZE SEMINAR 2012 (NPS 2012) 0 Organized by School of Chemistry Editor: Dr. Nabakrushna Behera Lecturer, School of Chemistry, S.U. (E-mail: [email protected]) 24 August 2013 Seminar Held Sambalpur University Jyoti Vihar-768 019 Odisha Organizing Secretary: Dr. N. K. Behera, School of Chemistry, S.U., Jyoti Vihar, 768 019, Odisha. Dr. S. C. Jamir Governor, Odisha Raj Bhawan Bhubaneswar-751 008 August 13, 2013 EMSSSEM I am glad to know that the School of Chemistry, Sambalpur University, like previous years is organizing a Seminar on "Nobel Prize" on August 24, 2013. The Nobel Prize instituted on the lines of its mentor and founder Alfred Nobel's last will to establish a series of prizes for those who confer the “greatest benefit on mankind’ is widely regarded as the most coveted international award given in recognition to excellent work done in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace. The Prize since its introduction in 1901 has a very impressive list of winners and each of them has their own story of success. It is heartening that a seminar is being organized annually focusing on the Nobel Prize winning work of the Nobel laureates of that particular year. The initiative is indeed laudable as it will help teachers as well as students a lot in knowing more about the works of illustrious recipients and drawing inspiration to excel and work for the betterment of mankind. I am sure the proceeding to be brought out on the occasion will be highly enlightening. -
History of Organometallic Chemistry 7
!"#$%&'(%)(%&*+,%-.$+//"0(0!.-"#$&' 1234516447($!.()"&#$(0%-8/.9.# !"#$%&&'$()$&*+,)&'#-,..(/$/"#'(0-*1$&//2**#3$#00#)-(,..1$()$-"#$4)(-#3$5-,-#06 7)+.,)3$,)3$8#*',)1$32*()+$-"#$9*3$:2,*-#*$&;$-"#$<<-"$/#)-2*1=$>-$(0$()$,$'(.(-,*1 ?",*',/1$()$@,*(06$"&A#B#*6$-",-$-"#$3(0/(?.()#$A,0$%&*)$()$CDEF=$G,3#-6$A"&$A,0 A&*H()+$ &)$ /&%,.-I/&)-,()()+$ ()H06$ 20#3$ ,*0#)(/I/&)-,()()+$ /&%,.-$ 0,.-0$ ;&*$ -"#(* ?*#?,*,-(&)=$>)$-"(0$A,16$"#$3(0/&B#*#3$-"#$;2'()+$,)3$(..I0'#..()+$G,3#-J0$.(:2(3 A"(/"$/&'?*(0#0$,$'(K-2*#$&;$/,/,3&1.$&K(3#$,)3$-#-*,'#-"1.3(,*0()#$%1$/,**1()+ &2-$-"#$;&..&A()+$*#,/-(&)L As2O3 + 4 MeCO2K [(AsMe2)2O] + [Me2As-AsMe2] + … M)#$&;$-"#$H#1$#B#)-0$&;$-"#$<><-"$/#)-2*1$A,0$-"#$3(0/&B#*1$&;$-"#$;(*0-$!$/&'?.#K6 R ),'#.1$N#(0#$0,[email protected]" IGRSTUV6$()$CWRD6$,.-"&2+"$-"#$/&**#/-$;&*'2.,$%#.&A A,0$?*&?&0#3$'2/"$.,--#*= – Cl Pt K+ Zeise salt, 1827 Cl Cl >)$-"#$'(3ICWXF06$Y*,)H.,)3$01)-"#0(Z#3$0#B#*,.$,(*I0#)0(-(B#$'#-,.I,.H1.$/&'?.#K#0 02/"$,0$N)7-R$QCWT[U6$S+7-R$QCWXRU6$5)7-T$,)3$\]#9$QCWEFU6$-"#$'#*/2*1$,)3$Z()/ /&'?.#K#0$%#()+$(''#3(,-#.1$20#3$-&$01)-"#0(Z#$',)1$&-"#*$',()I+*&2?$&*+,)&'#-I ,..(/$/&'?.#K#0=$Y&*$()0-,)/#6$Y*(#3#.$,)3$G*,;-0$?*#?,*#3$0#B#*,.$&*+,)&/".&*&0(I .,)#0$^)5(G.T_)$;*&'$-"#$*#,/-(&)0$&;$5(G.T$A(-"$N)^R$QCWE9U=$5"&*-.1$,;-#*A,*306 5/"`-Z#)%#*+#*6$,)$a.0,-(,)$/"#'(0-6$01)-"#0(Z#3$-"#$;(*0-$'#-,.I/,*%&)1.$3#*(B,I -(B#[email protected]$,)[email protected]$QCWEWICWDFU=$!A#)-1$1#,*0$.,-#*6$-"#$;(*0-$%(),*1 '#-,.I/,*%&)1.$/&'?&2)30$,??#,*#3L$Pb(QGMUTV$Q]&)36$CW[FU$,)3$PY#QGMUXV$Q]&)3 ,)3$\#*-"#.&-6$CW[CU=$Y*&'$CW[9$&)A,*30$,)3$&B#*$,$?#*(&3$&;$-A#)-1$1#,*06$c#*)#* -
Heidelberg Nobel Prize Winners
Heidelberg Nobel Prize Winners Christoph Mager bert Bunsen in Heidelberg and Hermann thesising fuel from carbon liquefi ed at ᕡ The Nobel Prize von Helmholtz in Berlin. After spend- high temperatures and pressures. After ing time in Breslau (Wrocław) and Kiel, studying under the Nobel Prize winners The Nobel Prize is the world’s most fa- he was appointed professor at the De- Walter Nernst and Fritz Haber, in the mous and most coveted award. Founded by the Swedish industrialist Alfred Nobel partment of Physics and Radiology in 1920s Bergius set up a carbon chemistry (1833-1895), since 1901 the prizes have Heidelberg, where he remained until his laboratory in the vicinity of BASF in been awarded in the fi ve categories che- retirement in 1931 ᕢ. From around Ludwigshafen. The award winning mistry, physiology or medicine, physics, li- 1908, with his “Deutsche Physik” he work of Carl Bosch was the implemen- terature, and peace. According to Nobel’s openly opposed modern theoretical tation of the high pressure synthesis of testament wishes, the prize is to be awar- work, such as that of Albert Einstein, ammonia, which is used as the basis of ded annually to the person “who, during which he condemned as “Jewish”. After fertiliser and explosives. After his doc- the preceding year, shall have conferred the greatest benefi t on mankind.“ In World War II, his involvement in Na- torate in 1899 he moved to BASF awarding the Nobel Prizes “no considera- tional Socialism was not punished on where he gradually withdrew from ac- tion whatever shall be given to the natio- the grounds of his age.