Contribution of Epigenetic Silencing of Tumor Necrosis Factor–Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Contribution of Epigenetic Silencing of Tumor Necrosis Factor–Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer Contribution of Epigenetic Silencing of Tumor Necrosis Factor–Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer Peter Horak,1 Dietmar Pils,1 Griet Haller,1 Ingrid Pribill,1 Max Roessler,1 Sandra Tomek,1 Reinhard Horvat,3 Robert Zeillinger,2 Christoph Zielinski,1 and Michael Krainer1 1Clinical Division of Oncology, Department of Medicine I; 2Department of Gynecology and Obstetrics; and 3Department of Clinical Pathology, University Hospital Vienna, Vienna, Austria Abstract Introduction Dysregulation of apoptosis may support tumorigenesis Defects in programmed cell death (apoptosis) mechanisms by allowing cells to live beyond their normally intended play an important role in tumor pathogenesis by enabling life span. The various receptors for tumor necrosis neoplastic cells to escape from cell autonomous or immuno- factor–related apoptosis-inducing ligand (TRAIL) are logic growth control mechanisms (1). Players in the various located on chromosome 8p21.2, a region frequently apoptotic pathways are well-known oncogenes but also deleted in ovarian cancer. Lack of expression of TRAIL intriguing candidates for tumor suppressor genes. A consider- receptor 1 (death receptor 4, DR4) correlates with able amount of effort has been put into the mutational analysis resistance to TRAIL-induced apoptosis in ovarian of receptors for apoptosis-inducing proteins, including those for cancer cells. Reconstitution of DR4 in the tumor necrosis factor (TNF)–related apotosis inducing ligand TRAIL-resistant A2780 ovarian cancer cell line was (TRAIL), but definite mutations are rare. The functional investigated with the demethylating agent TRAIL receptors death receptors 4 (DR4, TRAIL-R1) and 5 5-aza-2V-deoxycytidine and transient gene transfer. (DR5, TRAIL-R2/TRICK2/KILLER), and decoy receptors 1 Regulation of other genes in the TRAIL pathway by (DcR1, TRAIL-R3/TRID)and2(DcR2, TRAIL-R4/ 5-aza-2V-deoxycytidine was assessed in DNA GeneChip TRUNDD) with thus far little known physiologic function experiments. Primary ovarian cancers were analyzed by are all located on chromosome 8p21.2 according to the methylation-specific PCR and immunohistochemical University of California Santa Cruz Human Genome Project analysis of a tissue microarray. Regulation of DR4 Working Draft June 2002 (http://genome.cse.ucsc.edu). This expression by demethylation or transient transfection is finding suggests evolutionary multiplication of one gene in this of functional relevance for TRAIL resistance in an region and subsequent gain or loss of function as mediator or ovarian cancer cell line. Hypermethylation of the DR4 inhibitor of apoptosis, respectively. Besides other common promoter could be found in 10 of 36 (27.7%) DNAs areas of genetic variation in ovarian cancer (reviewed in ref. 2), isolated from ovarian cancer tissue. In an independent 8p21.2 is a region frequently deleted in this malignancy (3, 4). set of 68 ovarian cancer cases, a complete loss or More recently, it was observed that ovarian cancers have a down-regulation of DR4 protein expression was higher TRAIL expression than normal ovarian epithelial observed 10.3% and 8.8% patients, respectively. samples and that high expression of TRAIL is associated with A significant (P = 0.019) majority of these patients was prolonged survival (5), additionally implicating a potential role below 50 years of age. Our findings show a functional of the TRAIL system in the pathogenesis of ovarian cancer. relevance of the level of DR4 expression in ovarian However, definite mutations in TRAIL receptors in ovarian cancer and suggest a substantial contribution of DR4 cancer could not be detected (6). Therefore, we investigated a hypermethylation and consequent loss of DR4 number of ovarian cancer cell lines for expression of players in expression to ovarian cancer pathogenesis, particularly the TRAIL pathway and could show that the lack of expression inpremenopausalpatients. (MolCancerRes2005; of DR4 correlated with resistance to TRAIL, whereas the 3(6):335–43) expression of other receptors did not (7). This phenomenon has also been described by other groups in different tumor entities as part of their efforts to characterize TRAIL as a potential Received 8/1/04; revised 2/28/05; accepted 4/1/05. therapeutic agent (8, 9). We wanted to further explore our Grant support: Fonds zur Fo¨rderung der wissenschaftlichen Forschung grant 13473. observation for its true physiologic relevance on a more The costs of publication of this article were defrayed in part by the payment of mechanistic level, and test whether the lack of expression of page charges. This article must therefore be hereby marked advertisement in DR4 in ovarian cancer cell lines is a genetic or epigenetic accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Requests for reprints: Michael Krainer, Clinical Division of Oncology, phenomenon, because a variety of tumor suppressor genes have Department of Medicine I, University Hospital, Wa¨hringer Gu¨rtel 18-20, been shown to be silenced in human cancers (10). Epigenetic A-1090 Vienna, Austria. Phone: 43-1-40400-4449; Fax: 43-1-40400-4451. E-mail: [email protected] silencing of TRAIL receptors is common in some cancer Copyright D 2005 American Association for Cancer Research. entities (11, 12), although hypermethylation of DR4 and DR5 Mol Cancer Res 2005;3(6). June 2005 335 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2005 American Association for Cancer Research. 336 Horak et al. in ovarian cancer has not been studied to date. Hyper- expression (Fig. 1B). In contrast, DR4 hypermethylation could methylation of the promoters of these genes could be causally not be found in any of the remaining DR4-expressing cell lines. involved in tumorigenesis of ovarian cancer. A reversion of DR5 expression was rather uniformly present throughout the DR4 loss in ovarian cancer by demethylation, together with the cell lines and hypermethylation of the DR5 promoter was not observation that methylation of DR4 can be found in a observed (data not shown). significant number of clinical cases, would provide an important piece of the puzzle in the poorly understood field Ovarian Cancer Cells Are Resistant to TRAIL of ovarian cancer biology. This observations would also guide We tested the nine available cell lines for TRAIL sensitivity. the use of TRAIL as one of the emerging tools for future The cell lines with low DR4 expression levels showed to be apoptosis-targeted cancer therapies. more resistant to the apoptotic effects of TRAIL at concen- trations of 1,000 ng/mL (Fig. 1C). Ovarian cancer cell line Results A2780 was completely resistant to TRAIL-induced apoptosis DR4 and DR5 Expression in Ovarian Cancer Cell Lines and previous experiments prompted us to assume that TRAIL We examined a panel of ovarian cancer cell lines and resistance is caused by lack of DR4 expression (6). Incubation determined the DR4 and DR5 mRNA expression using real- of A2780 cells with 5-aza-2V-deoxycytidine (AzadC) restored time PCR. We found that two cell lines (A2780 and MZ-37) DR4 expression and sensitized A2780 cells to subsequent had no detectable DR4 expression and two other cell lines had treatment with TRAIL (Fig. 2A). In accordance with these two a very low DR4 expression (MZ-4 and MZ-15; Fig. 1A). Then, facts, AzadC induces time-dependent DR4 mRNA reexpression the methylation status was determined and correlated with the in the A2780 cell line, reaching a peak of expression expression pattern. We observed DR4 promoter hypermethy- comparable with the constitutively DR4-expressing, TRAIL- lation in 3 of 4 (75%) cell lines displaying low or missing DR4 sensitive cell lines after 96 hours (Fig. 2B). FIGURE 1. AzadC treatment demethylates hypermethylated CpG islands of the DR4 promoter and induces DR4 reexpression, thus sensitizing A2780 cells to TRAIL-induced apoptosis. A. Apoptosis assay. Combined treatment with AzadC and TRAIL leads to an increase in apoptosis as measured with APO- Direct kit. B. Time-dependent up-regulation of DR4 mRNA by AzadC (relative quantitative reverse transcription-PCR) in the ovarian cancer cell line A2780. C. Apoptosis after TRAIL treatment (100 ng/mL) in A2780 ovarian cancer cells transfected with either truncated or full-length DR4 compared with mock-treated cells. Mol Cancer Res 2005;3(6). June 2005 Downloaded from mcr.aacrjournals.org on September 27, 2021. © 2005 American Association for Cancer Research. Hypermethylation of DR4 in Ovarian Cancer 337 FIGURE 2. A. Real-time DR4 and DR5 expression related to an internal calibrator (set to 1). PCR reactions of the A2780 and MZ-37 cell lines yielded no detectable product after 40 PCR cycles. B. Methylation status of the DR4 promoter in ovarian cancer cell lines. C. TRAIL sensitivity of ovarian cancer cell lines. TRAIL (1,000 ng/mL) – induced apoptosis was assessed as follows: negative (À) for <10% positively stained cells; positive (+) for 10% to 50% apoptosis; and strongly positive (++) for >50% apoptotic cells after 24-hour incubation. Microarray Analysis of AzadC-Treated Cells demethylation by AzaD (Fig. 2C). Interestingly, also, the Regulation of other players in the TRAIL pathway besides overexpression of the truncated variant of the DR4 protein— DR4 can also be observed and may, in addition, be responsible missing the highly conserved death domain but retaining the for the reconstitution of TRAIL sensitivity in the A2780 cell possibility to form heterodimers with other receptors—exhibited line. To investigate these genes, we did a global gene expression some residual proapoptotic effects. analysis comparing mock- and AzadC-treated A2780 cells by standard microarray technology. We focused on the expression DR4 Methylation and Expression in Primary Cancer of genes involved in the known TRAIL pathways and checked Samples all players for their representation on the Affymetrix HG-U133A Tumor DNA of 36 ovarian cancer cases were investigated and HG-U133B GeneChip (Table 1). All genes of interest were and 10 of 36 (27.8%) patients showed methylation of DR4 in well represented except, interestingly, DR4, where only 2 of 11 their tumor (Fig.
Recommended publications
  • TNF Decoy Receptors Encoded by Poxviruses
    pathogens Review TNF Decoy Receptors Encoded by Poxviruses Francisco Javier Alvarez-de Miranda † , Isabel Alonso-Sánchez † , Antonio Alcamí and Bruno Hernaez * Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; [email protected] (F.J.A.-d.M.); [email protected] (I.A.-S.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +34-911-196-4590 † These authors contributed equally. Abstract: Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF- based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules. Keywords: poxvirus; immune evasion; tumour necrosis factor; tumour necrosis factor receptors; lymphotoxin; inflammation; cytokines; secreted decoy receptors; vaccinia virus; ectromelia virus; cowpox virus Citation: Alvarez-de Miranda, F.J.; Alonso-Sánchez, I.; Alcamí, A.; 1. TNF Biology Hernaez, B. TNF Decoy Receptors TNF is a potent pro-inflammatory cytokine with a broad range of biological effects, Encoded by Poxviruses. Pathogens ranging from the activation of inflammatory gene programs to cell differentiation or 2021, 10, 1065.
    [Show full text]
  • TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
    Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs.
    [Show full text]
  • Comprehensive Product List
    Catalog # Product Description Retail Price OEM Price 1007 Antibody IL-1R associated kinase 225/100ug 125/100ug 1009 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1012 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1021 Antibody JAK activated transcription 225/100ug 125/100ug 1107 Antibody Tyrosine kinase substrate p62DOK 225/100ug 125/100ug 1112 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1113 Antibody Ligand for DR4 and DR5 225/100ug 125/100ug 1115 Antibody Adapter Molecule 225/100ug 125/100ug 1117 Antibody Adapter Molecule 225/100ug 125/100ug 1120 Antibody Cell Death Receptor 225/100ug 125/100ug 1121 Antibody Ligand for GFRa-2 225/100ug 125/100ug 1123 Antibody CCR3 ligand 225/100ug 125/100ug 1125 Antibody Tyrosine kinase substrate 225/100ug 125/100ug 1128 Antibody A new caspase 225/100ug 125/100ug 1129 Antibody NF-kB inducing kinase 225/100ug 125/100ug 1131 Antibody TNFa converting enzyme 225/100ug 125/100ug 1133 Antibody GDNF receptor 225/100ug 125/100ug 1135 Antibody Neurturin receptor 225/100ug 125/100ug 1137 Antibody Persephin receptor 225/100ug 125/100ug 1139 Antibody Death Receptor for TRAIL 225/100ug 125/100ug 1141 Antibody DNA fragmentation factor & Inhibitor of CAD 225/100ug 125/100ug 1148 Antibody DNA fragmentation factor & Inhibitor of CAD 225/100ug 125/100ug 1150 Antibody Activator of MAPK pathway 225/100ug 125/100ug 1151 Antibody Apoptosis Signal-regulation Kinase 225/100ug 125/100ug 1156 Antibody FLICE inhibitory protein 225/100ug 125/100ug 1158 Antibody Cell Death Receptor 225/100ug 125/100ug 1159
    [Show full text]
  • Biolegend.Com
    Mechanisms of Cell Death TRAIL (TNFSF10) TNF-α Death Receptor 4 (TNFRSF10A/TRAIL-R1) Death Receptor 5 Zombie Dyes (TNFRSF10B/TRAIL-R2) Propidium Iodide (PI) BAT1, TIM-4 TNF RI (TNFRSF1A) 7-Amino-Actinomycin (7-AAD) MER TNF RII (TNFRSF1B) FAS-L GAS6 (TNFSF6/CD178) TRAIL (TNFSF10) Apoptotic Cell Death Domain Zombie Dyes Phosphatidylserine K63 Ubiquitin NH2 Removal ICAM3? ROCK1 NH CD14 2 Eat-Me Signals FAS Death Inducing Cytoskeletal Rearrangement, (TNFRSF6/CD95) Signaling Complex (DISC) TRADD Cytoskeletal Rearrangement, TRADD Decoy Receptor 2 FADD (TNFRSF10D/TRAIL-R4) Actomysin Contraction Engulfment RIP1 TWEAK RIP1 oxLDL (TNFSF12) FADD CIAP1/2 K63 Ubiquitination Blebbing CD36 Death Receptor 3 TWEAK (TNFSF12) PI FADD (TNFRSF25, APO-3) 7-AAD TRAF1 FADD Procaspase 8,10 TRAF 3 Phagocyte FLIP PANX1 Macrophage Monocyte Neutrophil Dendritic Cell Fibroblast Mast Cell Procaspase 8,10 NF-kB TWEAK-R (TNFRSF12A/Fn14) Find-Me Signals Lysophosphocholine C Caspase 8,10 TRAF5 TRAF2 Sphingosine-1-Phosphate G2A? Nucleotides A Decoy TRAIL Receptor R1 (TNFRSF23) Bid Cell Survival ATP, UTP Decoy TRAIL Receptor R2 (TNFRSF22) Sphingosine-1 TRADD Phosphate Receptor Decoy Receptor 1 (TNFRSF10C/TRAIL-R3) Procaspase 3 Proliferation RIP1 G P2y2 t-Bid Bcl-2 T Chemotaxis, Caspase 3 Bcl-2-xL, MCL-1 ? ICAD RIP1 Engulfment Degradation Bax, Bak Oligomerization TRADD Death Receptor 6 Extracellular ATP Bacterial pore-forming toxins TRAIL (TNFSF10) ICAD (TNFRSF21) Monosodium urate crystals Cholesterol crystals Death Receptor DNA Fragmentation Cholera toxin B, Mitochondria
    [Show full text]
  • Differential Susceptibility to TRAIL of Normal Versus Malignant Human Urothelial Cells
    Cell Death and Differentiation (2006) 13, 1564–1576 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd Differential susceptibility to TRAIL of normal versus malignant human urothelial cells LP Steele1, NT Georgopoulos1,2, J Southgate2, PJ Selby1 and Introduction LK Trejdosiewicz*,1 Tumor necrosis factor (TNF)-related apoptosis-inducing 1 Institute of Molecular Medicine, Epidemiology & Cancer Research, St James’s ligand (TRAIL) is a member of the TNF family capable of University Hospital, Leeds, UK inducing apoptosis following ligation of one or both of the 2 Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, TRAIL death receptors, TRAIL-R1 (DR4) and TRAIL-R2 University of York, York, UK (DR5),1,2 and assembly of a death-inducing signaling complex * Corresponding author: LK Trejdosiewicz, Lymphoepithelial Interactions (DISC).3 Although some components of the DISC remain Laboratory, Cancer Research Building, Institute of Molecular Medicine, unknown, recruitment of both the Fas-associated death Epidemiology & Cancer Research, St James’s University Hospital, Leeds LS9 domain (FADD) and of caspase-8 is necessary for TRAIL- 7TF, UK. Tel: þ 44(0) 113 206 5266; Fax: þ 44(0) 113 242 9886; 4 E-mail: [email protected] induced apoptosis. TRAIL can also bind to two decoy receptors, TRAIL-R3 (decoy receptor 1, DcR1) and TRAIL- Received 06.4.05; revised 16.11.05; accepted 16.11.05; published online 13.1.06 R4 (DcR2), which lack a functional cytoplasmic death domain Edited by GM Cohen and consequently are incapable of transducing apoptotic signals. Although decoy receptors may serve to protect normal cells from TRAIL-induced apoptosis,5 the exact nature Abstract of their function remains poorly understood.
    [Show full text]
  • Cell Structure & Function
    Cell Structure & Function Antibodies and Reagents BioLegend is ISO 13485:2016 Certified Toll-Free Tel: (US & Canada): 1.877.BIOLEGEND (246.5343) Tel: 858.768.5800 biolegend.com 02-0012-03 World-Class Quality | Superior Customer Support | Outstanding Value Table of Contents Introduction ....................................................................................................................................................................................3 Cell Biology Antibody Validation .............................................................................................................................................4 Cell Structure/ Organelles ..........................................................................................................................................................8 Cell Development and Differentiation ................................................................................................................................10 Growth Factors and Receptors ...............................................................................................................................................12 Cell Proliferation, Growth, and Viability...............................................................................................................................14 Cell Cycle ........................................................................................................................................................................................16 Cell Signaling ................................................................................................................................................................................18
    [Show full text]
  • The Concise Guide to Pharmacology 2019/20: Catalytic Receptors
    Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Catalytic receptors. British Journal of Pharmacology, 176(S1), S247- S296. https://doi.org/10.1111/bph.14751 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14751 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14751. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology (2019) 176, S247–S296 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors Stephen PH Alexander1 , Doriano Fabbro2 , Eamonn Kelly3, Alistair Mathie4 ,JohnAPeters5 , Emma L Veale4 , Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6
    [Show full text]
  • Cell-Mediated and Cell Membrane-Coated Nanoparticles for Drug Delivery and Cancer Therapy
    Yaman et al. Cancer Drug Resist 2020;3:879-911 Cancer DOI: 10.20517/cdr.2020.55 Drug Resistance Review Open Access Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy Serkan Yaman1,2,#, Uday Chintapula1,2,#, Edgar Rodriguez1, Harish Ramachandramoorthy1,2, Kytai T. Nguyen1,2 1Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA. 2Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA. #Yaman S and Chintapula U contributed equally to this work. Correspondence to: Dr. Kytai T. Nguyen, Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd ERB244, Arlington, TX 76010, USA. E-mail: [email protected] How to cite this article: Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. Cancer Drug Resist 2020;3:879-911. http://dx.doi.org/10.20517/cdr.2020.55 Received: 24 Jul 2020 First Decision: 25 Aug 2020 Revised: 16 Sep 2020 Accepted: 21 Sep 2020 Available online: 3 Nov 2020 Academic Editor: Vladimir P. Torchilin Copy Editor: Cai-Hong Wang Production Editor: Jing Yu Abstract Nanotechnology-based drug delivery platforms have been developed over the last two decades because of their favorable features in terms of improved drug bioavailability and stability. Despite recent advancement in nanotechnology platforms, this approach still falls short to meet the complexity of biological systems and diseases, such as avoiding systemic side effects, manipulating biological interactions and overcoming drug resistance, which hinders the therapeutic outcomes of the NP-based drug delivery systems.
    [Show full text]
  • A Novel Fully Human Agonistic Single Chain Fragment Variable Antibody Targeting Death Receptor 5 with Potent Antitumor Activity in Vitro and in Vivo
    Article A Novel Fully Human Agonistic Single Chain Fragment Variable Antibody Targeting Death Receptor 5 with Potent Antitumor Activity In Vitro and In Vivo Gaoxin Lei, Menglong Xu, Zhipan Xu, Lili Gu, Chenchen Lu, Zhengli Bai, Yue Wang, Yongbo Zhang, Huajing Hu, Yiwei Jiang, Wenfeng Zhao and Shuhua Tan * State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; [email protected] (G.L.); [email protected] (M.X.); [email protected] (Z.X.); [email protected] (L.G.); [email protected] (C.L.); [email protected] (Z.B.); [email protected] (Y.W.); [email protected] (Y.Z.); [email protected] (H.H.); [email protected] (Y.J.); [email protected] (W.Z.) * Correspondence: [email protected]; Tel.: +86-25-8327-1012 Received: 27 July 2017; Accepted: 17 September 2017; Published: 27 September 2017 Abstract: Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents.
    [Show full text]
  • TRAIL-Decoy Receptor-1 Disappears in Granulosa Cells of Atretic Follicles in Porcine Ovaries
    Journal of Reproduction and Development, Vol. 48, No. 2, 2002 —Original— TRAIL-Decoy Receptor-1 Disappears in Granulosa Cells of Atretic Follicles in Porcine Ovaries Satoko WADA1), Noboru MANABE1), Naoko INOUE1), Mizuho NAKAYAMA1), Toshikatsu MATSUI1) and Hajime MIYAMOTO1) 1) Unit of Anatomy and Cell Biology, Department of Animal Sciences, Kyoto University, Kyoto 606-8502, Japan Abstract. To reveal the specific regulatory molecules that control granulosa cell apoptosis during follicular atresia, we immunohistochemically examined the localization of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its receptors in porcine ovaries. A marked reduction in the expression of decoy receptor-1 (DcR1), which has high affinity for TRAIL, was demonstrated in granulosa cells of atretic follicles, but no marked differences were seen in expression of TRAIL or other TRAIL-receptors (death receptor-4 or death receptor-5) in granulosa cells between healthy and atretic follicles. No positive staining for DcR2 was seen. We presum that TRAIL and its receptors are involved in induction of apoptosis in granulosa cells during atresia, and that DcR1 plays an inhibitory role in granulosa cell apoptosis. Key words: Apoptosis, TRAIL-decoy receptor, Follicular atresia, Granulosa cell, Pig (J. Reprod. Dev. 48: 167–173, 2002) n mammalian ovaries, more than 99% of the [15–19]. However, it has not been determined follicles undergo a degenerative change known whether the FasL-Fas system mediates apoptosis in as atresia at varying stages of follicle development pig ovaries. Previously, we revealed species- [1, 2]. A number of studies of follicular atresia have specific differences in the apoptotic process in revealed the morphological and biochemical granulosa cells and indicated that local mechanisms characteristics of atretic follicles [3, 4].
    [Show full text]
  • Characterization of Chicken TNFR Superfamily Decoy Receptors, Dcr3 and Osteoprotegerinq
    BBRC Biochemical and Biophysical Research Communications 307 (2003) 956–961 www.elsevier.com/locate/ybbrc Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerinq Jamie T. Bridgham and Alan L. Johnson* Department of Biological Sciences and the Walther Cancer Research Center, The University of Notre Dame, P.O. Box369, Notre Dame, IN 46556, USA Received 31 May 2003 Abstract Tumor necrosis factor (TNF) family ligands bind to death domain-containing TNF receptors (death receptors), which can subsequently activate intracellular signaling pathways to initiate caspase activity and apoptotic cell death. Decoy receptors, without intracellular death domains, have been reported to prevent cytotoxic effects by binding to and sequestering such ligands, or by interfering with death receptor trimerization. The chicken death receptors, Fas, TNFR1, DR6, and TVB, are constitutively ex- pressed in a relatively wide variety of hen tissues. In this study, two chicken receptors with sequence homology to the mammalian decoys, DcR3 and osteoprotegerin, were identified and their pattern of expression was characterized. Unlike the previously iden- tified chicken death receptors, the newly characterized decoy receptors show comparatively limited expression among tissues, suggesting a tissue-specific function. Finally, characterization of these chicken receptors further contributes to understanding the evolutionary divergence of TNFR superfamily members among vertebrate species. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Tumor necrosis factor receptor superfamily; TNF ligands; Death receptor; Decoy receptor; Ovary; Chicken; Apoptosis Death receptors (DRs) are characterized by the pres- Alternatively, many of the death receptors are capa- ence of a variable number of extracellular cysteine-rich ble of signaling through intracellular pathways that ac- motifs that comprise the ligand binding domain, a single- tually promote cell survival.
    [Show full text]
  • University of Groningen Probing the Ligand Receptor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Probing the ligand receptor interface of TNF ligand family members RANKL and TRAIL Wang, Yizhou DOI: 10.33612/diss.127959201 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Wang, Y. (2020). Probing the ligand receptor interface of TNF ligand family members RANKL and TRAIL. University of Groningen. https://doi.org/10.33612/diss.127959201 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-12-2020 Chapter 1 General introduction and scope of the thesis Chapter 1 TNF superfamily The discovery of tumor necrosis factor (TNF) superfamily dates back to the middle of the nineteenth century when O‘Malley found a tumor-necrotizing factor in the serum that could mediate tumor regression effects [1].
    [Show full text]