Characterization of Chicken TNFR Superfamily Decoy Receptors, Dcr3 and Osteoprotegerinq

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Chicken TNFR Superfamily Decoy Receptors, Dcr3 and Osteoprotegerinq BBRC Biochemical and Biophysical Research Communications 307 (2003) 956–961 www.elsevier.com/locate/ybbrc Characterization of chicken TNFR superfamily decoy receptors, DcR3 and osteoprotegerinq Jamie T. Bridgham and Alan L. Johnson* Department of Biological Sciences and the Walther Cancer Research Center, The University of Notre Dame, P.O. Box369, Notre Dame, IN 46556, USA Received 31 May 2003 Abstract Tumor necrosis factor (TNF) family ligands bind to death domain-containing TNF receptors (death receptors), which can subsequently activate intracellular signaling pathways to initiate caspase activity and apoptotic cell death. Decoy receptors, without intracellular death domains, have been reported to prevent cytotoxic effects by binding to and sequestering such ligands, or by interfering with death receptor trimerization. The chicken death receptors, Fas, TNFR1, DR6, and TVB, are constitutively ex- pressed in a relatively wide variety of hen tissues. In this study, two chicken receptors with sequence homology to the mammalian decoys, DcR3 and osteoprotegerin, were identified and their pattern of expression was characterized. Unlike the previously iden- tified chicken death receptors, the newly characterized decoy receptors show comparatively limited expression among tissues, suggesting a tissue-specific function. Finally, characterization of these chicken receptors further contributes to understanding the evolutionary divergence of TNFR superfamily members among vertebrate species. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Tumor necrosis factor receptor superfamily; TNF ligands; Death receptor; Decoy receptor; Ovary; Chicken; Apoptosis Death receptors (DRs) are characterized by the pres- Alternatively, many of the death receptors are capa- ence of a variable number of extracellular cysteine-rich ble of signaling through intracellular pathways that ac- motifs that comprise the ligand binding domain, a single- tually promote cell survival. For example, TNFR1 is pass (type I) transmembrane domain and, in particular, a known to activate nuclear factor jB(NFjB) resulting in cytoplasmic death-domain. When bound to their cog- increased transcription of cell survival signals such as X- nate ligands, DRs typically form homotrimers, a process linked inhibitor of apoptosis protein (XIAP) [2], Bcl- that modifies the conformation of the cytoplasmic do- XLong [3], and FLICE-like inhibitory protein (FLIP) [4]. main and initiates cell signaling. DRs are capable of The ability of TNF family ligands to activate DR initiating apoptotic pathways in a cell type-dependent signaling is proposed to be modulated by the presence of fashion by signaling through binding of their death-do- decoy receptors (DcRs) that can bind to and sequester mains with death domains of cytoplasmic adaptor pro- ligands from the death inducing receptors and/or inter- teins. The adaptor proteins (e.g., Fas associated via fere with receptor trimerization. Similar to DRs, DcRs death domain, FADD), in turn, interact with initiator contain cysteine-rich ligand binding domains, but do not caspases (e.g., caspase-8) via a death effector domain possess intracellular death domains and may, or may (DED). These interactions ultimately promote a cascade not, contain a transmembrane domain. Mammalian of caspase enzyme activation leading to cell death [1]. DcRs are known to exist for TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL). Ad- ditionally, splice variants encoding soluble forms of Fas, q Supported by USDA 99-35203-7736, NIH HD36095, and DOD DAMD17-03-1-0206 to A.L.J. which are predicted to function as decoys, have been * Corresponding author. Fax: 1-574-631-7413. identified in the human [5] and chicken [6], and soluble E-mail address: [email protected] (A.L. Johnson). Fas variants are capable of inhibiting apoptosis induced 0006-291X/03/$ - see front matter Ó 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0006-291X(03)01304-4 J.T. Bridgham, A.L. Johnson / Biochemical and Biophysical Research Communications 307 (2003) 956–961 957 by the FasL in human T (HUT) lymphoma cells [5]. It Two chicken EST sequences with similarity to human OPG were has been proposed that the relative ratio of DR to DcR identified in the University of Delaware Chicken EST database (pitu- may determine susceptibility of cells to DR-mediated itary gland, hypothalamus, and pineal gland library, clone No. BI393190, and breast muscle, leg muscle, and epiphyseal growth plate cell signaling [7]. library, clone No. BM488261; http://www.chickest.udel.edu/). These More specifically, in the mammalian ovary there is sequences encompass a partial open reading frame with homology to limited immunohistochemical evidence to suggest that the cysteine-rich domain of mammalian OPGs, but lacking the C- DcR-1 (a TRAIL DcR) is expressed in porcine granu- terminus. Homologous primers based on the two EST sequences were 0 losa cells and that decreased levels of DcR-1 are asso- used to amplify a 454 bp fragment (forward primer 5 -TTC TTC CAC CAA CCA CAA GA AC-30 and reverse primer 50-GGG CAA CTT ciated with follicle death via atresia [8]. This finding is of TTA CAA ACA GTG TCA C-30) using an ovarian stromal tissue potential significance, given the importance of granulosa template with the identical amplification conditions described above. cell survival to the viability of differentiating ovarian Each PCR product was cloned into TA cloning vector (Invitrogen, follicles [9]. Brook trout (Salvelinus fontinalis) granulosa Carlsbad, CA), transformed into INVaF0cells (Invitrogen), and sub- cells also express a decoy receptor (TDcR) that becomes sequently sequenced using the dideoxychain-termination method with Sequenase version 2.0 (USB Corporation, Cleveland, OH). Final se- upregulated just after the completion of ovulation [10], quences for full-length clones were obtained through Canadian Mo- presumably at the time of ovarian regression. lecular Research Service (Ottawa, Ont., Canada). Sequence analysis In ongoing studies, we utilize the hen ovary as a and alignments were performed using MacVector 6.5 software (Oxford model system to study DR activation and function in Molecular, Genetics Computer Group, Madison, WI). relation to ovarian follicle viability and development Animals and tissue collection. Single-comb white Leghorn hens (H&H Poultry, Portland IN), 25–35 weeks of age and laying regular (e.g., [6,11,12]). The potential importance of signaling sequences of at least 5–6 eggs, were used in all studies described. Birds through death receptors as one pathway to initiate were housed individually in laying batteries, provided with free access ovarian follicle atresia has been proposed for several to feed (Purina Layeena Mash, Purina Mills, St. Louis, MO) and vertebrate species (bovine, [13]; rat, [14]; and chicken, water, and were exposed to a photoperiod of 15 h light, 9 h darkness, [6]). Significantly, four recently identified chicken death with lights on at midnight. Individual laying cycles were monitored by the daily timing of oviposition. Hens were killed approximately 16– receptors (Fas, TNFR1, DR6, and TVB) are expressed 18 h prior to a midsequence ovulation by cervical dislocation. All at higher levels in atretic follicles as compared to healthy procedures described herein were reviewed and approved by the Uni- follicles [6,11,12]. These studies also demonstrate that versity of Notre Dame Institutional Animal Care and Use Committee, levels of receptor expression are regulated by growth and were performed in accordance with the Guiding Principles for the factors and gonadotropins that promote granulosa cell Care and Use of Laboratory Animals. Tissues were collected from the chicken ovarian stroma, post- survival. The presence of multiple death receptors in this ovulatory follicle, brain, spleen, bone marrow, oviduct, kidney, and single cell type, each controlled by a unique set of in- heart for isolation of total RNA. Ovarian follicle tissues included tracellular signaling pathways, suggests a precise and granulosa and theca from 3 to 5 and 6 to 8 mm diameter prehierarchal intricate regulation of DR activation and signaling, in- (undifferentiated) follicles, and the largest (F1) and second largest (F2) cluding the potential for modulation by DcRs. Ac- preovulatory follicles. Morphologically normal and atretic follicles (3– 8 mm) were processed without separating the granulosa and theca cordingly, in the present report, we provide evidence for layers, as previously described [16]. Samples were collected and pro- two new chicken DcRs, DcR3 and osteoprotegerin cessed immediately or frozen at )70 °C. (OPG), and characterize their selective expression in Northern blot analysis. EcoRI restriction digests were performed to ovarian and extra-ovarian tissues. isolate the chDcR3 558 bp and chOPG 454 bp inserts from the clones described above for use as cDNA probe templates. Templates were random-prime labeled with the Megaprime DNA Labeling System (Amersham, Piscataway, NJ) and [32P]dCTP (3000 Ci/mmol; Amer- Materials and methods sham). Prehybridization was carried out for at least 30 min at 60 °C, at which time probes were added and hybridization was allowed to Isolation and characterization of chicken (ch) decoy receptors. The proceed overnight. Stringent washes were conducted by rinsing with chDcR3 sequence was initially identified in the University of Man- 2Â SSC (single strength SSC ¼ 150 mM sodium chloride and 15 mM chester Institute of Science and Technology (UMIST) expressed se- sodium citrate,
Recommended publications
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • TNF Decoy Receptors Encoded by Poxviruses
    pathogens Review TNF Decoy Receptors Encoded by Poxviruses Francisco Javier Alvarez-de Miranda † , Isabel Alonso-Sánchez † , Antonio Alcamí and Bruno Hernaez * Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; [email protected] (F.J.A.-d.M.); [email protected] (I.A.-S.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +34-911-196-4590 † These authors contributed equally. Abstract: Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF- based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules. Keywords: poxvirus; immune evasion; tumour necrosis factor; tumour necrosis factor receptors; lymphotoxin; inflammation; cytokines; secreted decoy receptors; vaccinia virus; ectromelia virus; cowpox virus Citation: Alvarez-de Miranda, F.J.; Alonso-Sánchez, I.; Alcamí, A.; 1. TNF Biology Hernaez, B. TNF Decoy Receptors TNF is a potent pro-inflammatory cytokine with a broad range of biological effects, Encoded by Poxviruses. Pathogens ranging from the activation of inflammatory gene programs to cell differentiation or 2021, 10, 1065.
    [Show full text]
  • TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
    Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs.
    [Show full text]
  • Comprehensive Product List
    Catalog # Product Description Retail Price OEM Price 1007 Antibody IL-1R associated kinase 225/100ug 125/100ug 1009 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1012 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1021 Antibody JAK activated transcription 225/100ug 125/100ug 1107 Antibody Tyrosine kinase substrate p62DOK 225/100ug 125/100ug 1112 Antibody HIV & chemokine receptor 225/100ug 125/100ug 1113 Antibody Ligand for DR4 and DR5 225/100ug 125/100ug 1115 Antibody Adapter Molecule 225/100ug 125/100ug 1117 Antibody Adapter Molecule 225/100ug 125/100ug 1120 Antibody Cell Death Receptor 225/100ug 125/100ug 1121 Antibody Ligand for GFRa-2 225/100ug 125/100ug 1123 Antibody CCR3 ligand 225/100ug 125/100ug 1125 Antibody Tyrosine kinase substrate 225/100ug 125/100ug 1128 Antibody A new caspase 225/100ug 125/100ug 1129 Antibody NF-kB inducing kinase 225/100ug 125/100ug 1131 Antibody TNFa converting enzyme 225/100ug 125/100ug 1133 Antibody GDNF receptor 225/100ug 125/100ug 1135 Antibody Neurturin receptor 225/100ug 125/100ug 1137 Antibody Persephin receptor 225/100ug 125/100ug 1139 Antibody Death Receptor for TRAIL 225/100ug 125/100ug 1141 Antibody DNA fragmentation factor & Inhibitor of CAD 225/100ug 125/100ug 1148 Antibody DNA fragmentation factor & Inhibitor of CAD 225/100ug 125/100ug 1150 Antibody Activator of MAPK pathway 225/100ug 125/100ug 1151 Antibody Apoptosis Signal-regulation Kinase 225/100ug 125/100ug 1156 Antibody FLICE inhibitory protein 225/100ug 125/100ug 1158 Antibody Cell Death Receptor 225/100ug 125/100ug 1159
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Biolegend.Com
    Mechanisms of Cell Death TRAIL (TNFSF10) TNF-α Death Receptor 4 (TNFRSF10A/TRAIL-R1) Death Receptor 5 Zombie Dyes (TNFRSF10B/TRAIL-R2) Propidium Iodide (PI) BAT1, TIM-4 TNF RI (TNFRSF1A) 7-Amino-Actinomycin (7-AAD) MER TNF RII (TNFRSF1B) FAS-L GAS6 (TNFSF6/CD178) TRAIL (TNFSF10) Apoptotic Cell Death Domain Zombie Dyes Phosphatidylserine K63 Ubiquitin NH2 Removal ICAM3? ROCK1 NH CD14 2 Eat-Me Signals FAS Death Inducing Cytoskeletal Rearrangement, (TNFRSF6/CD95) Signaling Complex (DISC) TRADD Cytoskeletal Rearrangement, TRADD Decoy Receptor 2 FADD (TNFRSF10D/TRAIL-R4) Actomysin Contraction Engulfment RIP1 TWEAK RIP1 oxLDL (TNFSF12) FADD CIAP1/2 K63 Ubiquitination Blebbing CD36 Death Receptor 3 TWEAK (TNFSF12) PI FADD (TNFRSF25, APO-3) 7-AAD TRAF1 FADD Procaspase 8,10 TRAF 3 Phagocyte FLIP PANX1 Macrophage Monocyte Neutrophil Dendritic Cell Fibroblast Mast Cell Procaspase 8,10 NF-kB TWEAK-R (TNFRSF12A/Fn14) Find-Me Signals Lysophosphocholine C Caspase 8,10 TRAF5 TRAF2 Sphingosine-1-Phosphate G2A? Nucleotides A Decoy TRAIL Receptor R1 (TNFRSF23) Bid Cell Survival ATP, UTP Decoy TRAIL Receptor R2 (TNFRSF22) Sphingosine-1 TRADD Phosphate Receptor Decoy Receptor 1 (TNFRSF10C/TRAIL-R3) Procaspase 3 Proliferation RIP1 G P2y2 t-Bid Bcl-2 T Chemotaxis, Caspase 3 Bcl-2-xL, MCL-1 ? ICAD RIP1 Engulfment Degradation Bax, Bak Oligomerization TRADD Death Receptor 6 Extracellular ATP Bacterial pore-forming toxins TRAIL (TNFSF10) ICAD (TNFRSF21) Monosodium urate crystals Cholesterol crystals Death Receptor DNA Fragmentation Cholera toxin B, Mitochondria
    [Show full text]
  • Osteoprotegerin: a Novel Secreted Protein Involved in the Regulation of Bone Density
    Cell, Vol. 89, 309±319, April 18, 1997, Copyright 1997 by Cell Press Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density W. S. Simonet,2 D. L. Lacey,7 C. R. Dunstan,7 during normal bone remodeling that occurs throughout M. Kelley,3 M.-S. Chang,4 R. LuÈ thy,4 life. In contrast, osteoclasts differentiate from hemato- H. Q. Nguyen,2 S. Wooden,5 L. Bennett,6 poietic precursors of the monocyte±macrophage lin- T. Boone,10 G. Shimamoto,10 M. DeRose,2 eage and resorb bone matrix. Both these cell types are R. Elliott,1 A. Colombero,1 H.-L. Tan,7 influenced by a wide variety of hormones, inflammatory G. Trail,5 J. Sullivan,8 E. Davy,3 N. Bucay,2 mediators, and growth factors (Suda et al., 1992; Mundy, L. Renshaw-Gegg,5 T. M. Hughes,2 D. Hill,7 1993a, 1993b). An imbalance of osteoblast and osteo- W. Pattison,4 P. Campbell,6 S. Sander,5 clast functions can result in skeletal abnormalities char- G. Van,7 J. Tarpley,7 P. Derby,9 R. Lee,10 acterized by increased (osteopetrosis) or decreased (os- Amgen EST Program, and W. J. Boyle1 teoporosis) bone mass. 1 Department of Cell Biology The study of osteopetrosis in mutant mice has led to 2 Department of Molecular Genetics significant advances in the understanding of the pro- 3 Department of Protein Chemistry cesses that regulate bone mass (Marks, 1989). From 4 Department of Computational Biology these studies we have learned the following: (i) genetic 5 Department of Mammalian Cell Molecular Biology defects in osteoclast development, maturation, and/or 6 Department of Immunology activation lead to decreased bone resorption and uni- 7 Department of Pathology formly result in severe osteopetrosis (Marks, 1989); (ii) 8 Department of Bacterial Expression the stromal microenvironment plays an essential role in osteoclast differentiation (Udagawa et al., 1989); (iii) 9 Department of Protein Structure signal transduction from the cell membrane through Src 10 Department of Process Science tyrosine kinase is necessary for osteoclast-mediated Amgen Inc.
    [Show full text]
  • Belantamab Mafodotin to Treat Multiple Myeloma: a Comprehensive Review of Disease, Drug Efficacy and Side Effects
    Review Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects Grace Lassiter 1,*, Cole Bergeron 2, Ryan Guedry 2, Julia Cucarola 2, Adam M. Kaye 3 , Elyse M. Cornett 4, Alan D. Kaye 4 , Giustino Varrassi 5, Omar Viswanath 4,6,7,8 and Ivan Urits 4,9 1 School of Medicine, Georgetown University, Washington, DC 20007, USA 2 School of Medicine, Louisiana State University Shreveport, Shreveport, LA 71103, USA; [email protected] (C.B.); [email protected] (R.G.); [email protected] (J.C.) 3 Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA; akaye@pacific.edu 4 Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; [email protected] (E.M.C.); [email protected] (A.D.K.); [email protected] (O.V.); [email protected] (I.U.) 5 Paolo Procacci Foundation, Via Tacito 7, 00193 Roma, Italy; [email protected] 6 College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85724, USA 7 Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE 68124, USA 8 Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85004, USA 9 Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA 02571, USA * Correspondence: [email protected] Received: 14 December 2020; Accepted: 18 January 2021; Published: 21 January 2021 Abstract: Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time.
    [Show full text]
  • TNF Receptor Superfamily Members RANK, RANKL, OPG Pathway As
    RESEARCH ARTICLE TNF Receptor Superfamily Members RANK, RANKL, OPG Pathway as Osteoimmunological Biomarker of Bone Healing after Orthognathic Surgery İhsan O Osar1, Yavuz Fındık2, Orhan Akpinar3 ABSTRACT Tumor necrosis factor (TNF) receptor superfamily member receptor activator of nuclear factor-κB (RANK), RANK-ligand (RANKL), and osteoprotegerin (OPG) pathway as osteoimmunological biomarker of bone healing after surgery. These biomarkers play an important role in the bone repair and healing after orthognathic surgery. The aim of our study was to evaluate levels of the RANKL–RANK–OPG cytokine system as osteoimmunological biomarker of bone healing after orthognathic surgery. Receptor activator of nuclear factor-κB, RANKL, and OPG were evaluated in 25 patients who is undergoing orthognathic surgery. Blood samples were collected before the operation, after 1st day, and 10th day of the operation. Differences among OPG, RANK, and RANKL averages were not statistically significant in all time levels and operation types. In this study, we concluded that RANKL/OPG ratio and blood serum RANK levels may show bone remodeling activity and bone remodeling activity after orthognathic surgery, although there is a need for further extensive studies. Keywords: Biomarker, General anesthesia, Orthognathic surgery. International Journal of Experimental Dental Science (2020): 10.5005/jp-journals-10029-1201 INTRODUCTION 1–3Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Orthognathic surgery is the main procedure for the correction Süleyman Demirel University, Isparta, Turkey of jaw function and esthetics of the face. Orthognathic surgery Corresponding Author: Yavuz Fındık, Department of Oral and is performed on the surgeon’s bone, but the processes on the Maxillofacial Surgery, Faculty of Dentistry, Süleyman Demirel University, bone activate the bone formation and destruction events on this Isparta, Turkey, Phone: +902462113251, e-mail: yavuzfindik32@ tissue.
    [Show full text]
  • Defining Molecular Adjuvant Effects on Human B Cell Subsets
    DEFINING MOLECULAR ADJUVANT EFFECTS ON HUMAN B CELL SUBSETS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL SCIENCES (TROPICAL MEDICINE) August 2019 By Jourdan Posner Dissertation Committee: Sandra P. Chang, Chairperson George Hui Saguna Verma William Gosnell Alan Katz ACKNOWLEDGMENTS First and foremost, I would like to express my gratitude to my PhD advisor and mentor, Dr. Sandra Chang. Her passion for science, scientific rigor, and inquisitive nature have been an inspiration to me. I am very grateful for her continuous support and mentorship. I would also like to thank my committee members, Dr. George Hui, Dr. Saguna Verma, Dr. William Gosnell, and Dr. Alan Katz, for their advice and support on this dissertation work. To my parasitology “dads”, Dr. Kenton Kramer and Dr. William Gosnell, I am forever grateful for all of the opportunities you’ve given to me. Your mentorship has guided me through the doctoral process and helped me to maintain “homeostasis”. Last, but not least, I’d like to thank my parents and brother who have been so supportive throughout my entire graduate career. I greatly appreciate all of the encouraging words and for always believing in me. And to my future husband, Ian, I could not have completed this dissertation work without your endless support. You are my rock. ii ABSTRACT Recent advances in vaccine development include the incorporation of novel adjuvants to increase vaccine immunogenicity and efficacy. Pattern recognition receptor (PRR) ligands are of particular interest as vaccine adjuvants.
    [Show full text]
  • Trailblazing Strategies for Cancer Treatment
    cancers Review TRAILblazing Strategies for Cancer Treatment Anna-Laura Kretz 1, Anna Trauzold 2,3, Andreas Hillenbrand 1, Uwe Knippschild 1, Doris Henne-Bruns 1, Silvia von Karstedt 4,5 and Johannes Lemke 1,* 1 Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; [email protected] (A.-L.K.); [email protected] (A.H.); [email protected] (U.K.); [email protected] (D.H.-B.) 2 Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany; [email protected] 3 Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany 4 Department of Translational Genomics, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany; [email protected] 5 Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann Straße 26, 50931 Cologne, Germany * Correspondence: [email protected] Received: 11 March 2019; Accepted: 26 March 2019; Published: 30 March 2019 Abstract: In the late 1990s, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-family, started receiving much attention for its potential in cancer therapy, due to its capacity to induce apoptosis selectively in tumour cells in vivo. TRAIL binds to its membrane-bound death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5) inducing the formation of a death-inducing signalling complex (DISC) thereby activating the apoptotic cascade. The ability of TRAIL to also induce apoptosis independently of p53 makes TRAIL a promising anticancer agent, especially in p53-mutated tumour entities.
    [Show full text]
  • A Comparison of the Cytoplasmic Domains of the Fas Receptor and the P75 Neurotrophin Receptor
    Cell Death and Differentiation (1999) 6, 1133 ± 1142 ã 1999 Stockton Press All rights reserved 13509047/99 $15.00 http://www.stockton-press.co.uk/cdd A comparison of the cytoplasmic domains of the Fas receptor and the p75 neurotrophin receptor 1,2 1,2 1 ,1 H Kong , AH Kim , JR Orlinick and MV Chao* Introduction 1 Molecular Neurobiology Program, Skirball Institute, New York University The p75 receptor is the founding member of the TNF Medical Center, 540 First Avenue, New York, NY 10016, USA receptor superfamily.1 Structural features shared by several 2 The ®rst two authors contributed equally to this study members of this family include a cysteine-rich extracellular * Corresponding author: MV Chao, Molecular Neurobiology Program, Skirball domain repeated two to six times and an intracellular motif Institute, New York University Medical Center, 540 First Avenue, New York, NY termed the `death domain'. The term `death domain' was 10016, USA. Tel: +1 212-263-0722; Fax: +1 212-263-0723; E-mail: [email protected] coined from its functional role in mediating apoptosis, particularly via the p55 TNF receptor and FasR.2,3 The Received 15.7.98; revised 20.8.99; accepted 23.8.99 death domain is a protein association motif4,5 that binds to Edited by C Thiele cytoplasmic proteins, which can trigger the caspase protease cascade or other signal transduction pathways. Multiple adaptor and death effector proteins that bind to the Abstract death domains of the p55 TNF and Fas receptors have The p75 neurotrophic receptor (p75) shares structural been identified.
    [Show full text]