Cascaded Converters for Integration and Management of Grid Level Energy Storage Systems Zuhair Muhammed Alaas Wayne State University
Total Page:16
File Type:pdf, Size:1020Kb
Wayne State University Wayne State University Dissertations 1-1-2017 Cascaded Converters For Integration And Management Of Grid Level Energy Storage Systems Zuhair Muhammed Alaas Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Part of the Electrical and Computer Engineering Commons Recommended Citation Alaas, Zuhair Muhammed, "Cascaded Converters For Integration And Management Of Grid Level Energy Storage Systems" (2017). Wayne State University Dissertations. 1772. http://digitalcommons.wayne.edu/oa_dissertations/1772 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. CASCADED CONVERTERS FOR INTEGRATION AND MANAGEMENT OF GRID LEVEL ENERGY STORAGE SYSTEMS by ZUHAIR ALAAS DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2017 MAJOR: ELECTRICAL ENGINEERING Approved By: ______________________________________ Advisor Date ______________________________________ ______________________________________ ______________________________________ © COPYRIGHT BY ZUHAIR ALAAS 2017 All Rights Reserved DEDICATION I dedicate my research work to Alaas family. A special feeling of completion of PhD degree to my dad and mom. Their words of support and encouragement still ring in my ears. Great thanks for my sisters, brothers and all Alaas family members who have never left my side. Also, many thanks to my uncles Zuhair, Abdullah and Ali. I will always appreciate all they have done. Finally, I dedicate this dissertation and give special thanks to my wonderful wife and my kids for being with me throughout the entire PhD program. ii ACKNOWLEDGEMENTS I would like to express my sincere appreciation to Professor Caisheng Wang, who contributed tremendous time to my research. Great appreciation is also due to Professor Le Yi Wang, Professor Feng Lin, and Professor Wen Chen for their constructive comments and valuable suggestions. Furthermore, I would like to thank Dr. Jianfei Chen for his support on the implementation of a 1.2kW/1.17kWh prototype of the proposed converter and many other valuable discussions I had with him. iii TABLE OF CONTENTS DEDICATION…………………………………………………….……………………..ii ACKNOWLEDGEMENTS………………………………………….…………………iii LIST OF FIGURES……………….................................................................................vii LIST OF TABLES.............................................................................................................x CHAPTER 1 INTRODUCTION......................................................................................1 1.1 Problem Statements ................................................................................................... 3 1.2 Research Purpose ....................................................................................................... 4 1.3 Literature Review ...................................................................................................... 6 1.4 Battery Pack/module ............................................................................................... 11 1.4.1 Electrochemical Battery Technologies ............................................................. 12 1.4.2 Battery Management System ............................................................................ 17 1.4.2.1 Battery Modeling ....................................................................................... 18 1.4.2.2 SOC/SOH States ........................................................................................ 20 1.4.2.3 Cell Balancing ............................................................................................ 22 1.5 Power Converters .................................................................................................... 24 1.5.1 Basic Converter Blocks .................................................................................... 24 1.5.2 Multilevel Inverter Topologies ......................................................................... 27 1.5.2.1 Common DC Source Multilevel Inverters ................................................. 28 1.5.2.2 Cascaded H-bridge Multilevel Inverter ...................................................... 31 1.5.3 Switching and Control Strategies ..................................................................... 35 1.5.3.1 Sinusoidal Pulse Width Modulation Technique ......................................... 35 1.5.3.2 PWM Scheme for Multilevel Inverter Topologies..................................... 37 iv 1.5.3.2.1 Phase-shifted PWM Modulation Scheme……………………………37 1.5.3.2.2 Level-shifted PWM Modulation Scheme……………………………38 CHAPTER 2 ISOLATED MULTILEVEL INVERTER FOR LARGE SCALE BATTERY ENERGY STORAGE SYSTEMS………………………………………..40 2.1 Proposed Isolated Multilevel Inverter ..................................................................... 40 2.1.1 H-bridge Cascaded Transformer Topology ...................................................... 40 2.1.2 Six-Switch Cascaded Transformer (SSCT) multilevel inverter ........................ 42 2.2 SOC Weighted Real and Reactive Power Control .................................................. 48 2.3 Simulation Studies ................................................................................................... 51 CHAPTER 3 NON-ISOLATED MULTILEVEL INVERTER FOR LARGE-SCALE BATTERY ENERGY STORAGE SYSTEMS………………………………………..55 3.1 Operation Principle of the Proposed HCMC ........................................................... 55 3.1.1 Circuit Topology ............................................................................................... 56 3.1.2 Phase-shifted PWM Modulation ....................................................................... 58 3.1.3 Hierarchal Cascaded Topology ......................................................................... 61 3.2 Charging and Discharging Control .......................................................................... 63 3.3 1.2kW/1.17kWh 208V Prototype System ............................................................... 68 3.3.1 Simulation Studies ............................................................................................ 68 3.3.2 Circuit Implementation ..................................................................................... 78 3.3.2.1 Inverter Design ........................................................................................... 78 3.3.2.2 Experimental Results ................................................................................. 81 CHAPTER 4 IMPROVED HCMC WITH PHASE-TO-PHASE SOC BALANCING CAPABILITY…………………………………………………………………………...85 4.1 Circuit Topology ..................................................................................................... 87 v 4.2 Phase-to-phase SOC Balancing ............................................................................... 88 4.3 Simulation Results ................................................................................................... 90 CHAPTER 5 CONCLUSIONS………………………………………………………...95 REFERENCES……………………………………………………………...…………..98 ABSTRACT……………………………………………………………………………120 AUTOBIOGRAPHICAL STATEMENT………………………..…………………..122 vi LIST OF FIGURES Fig. 1. Hydrothermal power system frequency response with/without BESS. .................... 2 Fig. 2. Electrochemical energy storage system technologies. ............................................ 12 Fig. 3. Commissions (MW) in the worldwide power sector. ............................................. 17 Fig. 4. Equivalent circuit of rechargeable battery model (discharging process). ............... 19 Fig. 5. Equivalent circuit of rechargeable battery model: (a) A simplified battery module , (b) R-C network for battery cell with high coulombic efficiency. ......................... 20 Fig. 6. The charge/discharge curve in a Lithium-ion battery cell [84]. .............................. 21 Fig. 7. Half-bridge circuit block. ........................................................................................ 25 Fig. 8. Output waveform for half-bridge converter: Vd= 400V and d= 0.625. ................... 25 Fig. 9. Single-phase H-bridge inverter. .............................................................................. 26 Fig. 10. Output waveform of an H-bridge inverter: Vd=400, fundamental frequency= 60 Hz, carrier frequency=1080 Hz. .................................................................................... 26 Fig. 11. Three-phase inverter. ............................................................................................. 27 Fig. 12. Classification of multilevel converters. ................................................................. 29 Fig. 13. Common dc source multilevel inverters: (a) Three-phase diode-clamped, and (b) Single-phase capacitor-clamped. ............................................................................ 30 Fig. 14. Nine-level cascaded H-bridge inverter. ................................................................. 31 Fig. 15 CHB nine-level inverter: (a) Phase voltage, and (b) Line voltage. ........................ 34 Fig. 16. Sinusoidal pulse width modulation technique. ...................................................... 35 Fig. 17. Over-modulation (m=1.3).....................................................................................