Hvdc Converter Station for Voltages Above +/-600 Kv

Total Page:16

File Type:pdf, Size:1020Kb

Hvdc Converter Station for Voltages Above +/-600 Kv 215 HVDC CONVERTER STATIONS FOR VOLTAGES ABOVE +/-600kV Working Group 14.32 December 2002 HVDC CONVERTER STATIONS FOR VOLTAGES ABOVE +/- 600kV Working Group 14.32 Members of the Working Group 14.32: M.Rashwan(Canada) Convenor J.Allaire(Canada) – U.Astrom(Sweden) – C.Barker(UK) – N.Dhaliwal(Canada) J.Holweg(Germany) – C.Pexito(Brazil) – V.Prasher(India) – Lui Zhang(China) Copyright © 2002 Tout détenteur d'une publication CIGRE sur support papier ou électronique n'en possède qu'un droit d'usage.Sont interdites,sauf accord express du CIGRE, la reproduction totale ou partielle autre qu'à usage personnel et privé, et toute mise a disposition de tiers, dont la diffusion sur un réseau intranet ou un réseau d'entreprise. Copyright © 2002 Ownership of a CIGRE publication, whether in paper form or on electronic support only infers right of use for personal purposes..Are prohibited, except if explicity agreed by CIGRE, total or partial reproduction of the publication for use other than personal and transfer to a third party; hence circulation on any intranet or other company network is forbidden. HVDC CONVERTER STATIONS FOR VOLTAGES ABOVE +/-600kV TABLE OF CONTENTS 1.SCOPE................................................................................................................... 2 2.INTRODUCTION................................................................................................ 2 3.REVIEW OF THE MAJOR FAILURES IN THE CURRENT HVDC CONVERTER STATIONS................................. 2 3.1 General ............................................................................................................... 2 3.2 Converter transformers.................................................................................... 3 3.3 HVDC wall bushings......................................................................................... 3 3.4 smoothing reactors ............................................................................................ 4 3.4.1 Oil smoothing reactors................................................................................... 4 3.4.2 air cored air insulated smoothing reactors .................................................. 5 4.HVDC SYSTEMS AT VOLTAGES HIGHER THAN 600kV DC.................. 5 4.1 Voltage selection ................................................................................................ 5 4.2 Bipole power rating........................................................................................... 6 5.AC SYSTEM CONDITIONS.............................................................................. 6 5.1 Sending end........................................................................................................ 6 5.2 Receiving end..................................................................................................... 7 5.3 Strenght of AC system ...................................................................................... 8 6.CONFIGURATION OF HVDC SYSTEM ........................................................ 8 6.1 Dc configuration ................................................................................................ 8 6.2 Factors affecting number of series converters per pole................................. 9 6.2.1 Technical feasibility........................................................................................ 9 6.2.2 System spinning reserve................................................................................. 9 6.2.3 Equipment failure .......................................................................................... 9 6.2.4 Transformer size ............................................................................................ 9 6.2.5 By-pass equipment ......................................................................................... 10 6.2.6 Parallel converters.......................................................................................... 10 6.2.7 Converter configuration ................................................................................ 11 7.INSULATION LEVELS...................................................................................... 11 7.1 Insulation levels and air clearances ................................................................. 11 7.2 Transformer insulation levels .......................................................................... 12 8.THYRISTOR VALVES....................................................................................... 14 8.1 Principal design of thyristor valves ................................................................. 14 8.2 Thyristor aspects ............................................................................................... 15 8.3 Thyristor valve testing ...................................................................................... 15 9.CONVERTER TRANSFORMERS FOR 800kV HVDC ................................. 16 9.1 Main design parameters ................................................................................... 16 9.2 Converter transformer design.......................................................................... 16 9.3 Transformer arrangement ............................................................................... 16 9.4 Transformer insulation..................................................................................... 17 9.5 Transformer impedance ................................................................................... 17 9.6 Approximate transformer size and shipping weight...................................... 18 9.7 Testing ................................................................................................................ 18 9.8 Conclusion.......................................................................................................... 18 10.SMOOTHING REACTOR ............................................................................... 18 10.1 Oil immersed smoothing reactors.................................................................. 19 10.2 Air cored air insulated smoothing reactor.................................................... 19 11 DC SWITCHYARD EQUIPMENT ................................................................. 19 11.1 Current transducers........................................................................................ 20 11.2 Voltage divider................................................................................................. 20 11.3 Arresters........................................................................................................... 20 11.4 Testing .............................................................................................................. 20 12.EXTERNAL INSULATION ............................................................................. 21 12.1 General ............................................................................................................. 21 12.2 Environment .................................................................................................... 21 12.3 Type of insulators............................................................................................ 22 12.4 Corrective actions............................................................................................ 23 12.5 Alternative design............................................................................................ 23 12.6 Dimension of porcelain insulators ................................................................. 24 12.7 Dimensions of composite insulators............................................................... 24 12.8 Conclusions ...................................................................................................... 25 13.CONVERTER STATION LAYOUT ............................................................... 25 13.1 Equipment insulation and air clearances...................................................... 25 13.2 Ease of equipment replacement ..................................................................... 25 13.3 Valve hall dimensions...................................................................................... 26 13.4 DC switchyard ................................................................................................. 27 13.5 Total dimensions.............................................................................................. 27 14. SUMMARY........................................................................................................ 27 15 CONCLUSIONS................................................................................................. 28 16 REFERENCES................................................................................................... 29 APPENDIX 1 ........................................................................................................... 31 APPENDIX 2 ........................................................................................................... 33 HVDC CONVERTER STATIONS FOR VOLTAGES ABOVE +/- 600kV 1. SCOPE In the previous studies the economic and technical aspects of building HVDC converter stations at voltages above 600kV dc were investigated. The scope of work of the WG14.32 is to review the current state of HVDC converter stations up to 600kV and the problems associated with it and to investigate in detail what needs to be done to expand the technology to voltages above 600kV and specifically to 800kV. Parallel operation of converters is not considered in this document. 2.
Recommended publications
  • High Voltage Direct Current Transmission – Proven Technology for Power Exchange
    www.siemens.com/energy/hvdc High Voltage Direct Current Transmission – Proven Technology for Power Exchange Answers for energy. 2 Contents Chapter Theme Page 1 Why High Voltage Direct Current? 4 2 Main Types of HVDC Schemes 6 3 Converter Theory 8 4 Principle Arrangement of an HVDC Transmission Project 11 5 Main Components 14 5.1 Thyristor Valves 14 5.2 Converter Transformer 18 5.3 Smoothing Reactor 20 5.4 Harmonic Filters 22 5.4.1 AC Harmonic Filter 22 5.4.2 DC Harmonic Filter 25 5.4.3 Active Harmonic Filter 26 5.5 Surge Arrester 28 5.6 DC Transmission Circuit 31 5.6.1 DC Transmission Line 31 5.6.2 DC Cable 32 5.6.3 High Speed DC Switches 34 5.6.4 Earth Electrode 36 5.7 Control & Protection 38 6 System Studies, Digital Models, Design Specifications 45 7 Project Management 46 3 1 Why High Voltage Direct Current? 1.1 Highlights from the High Voltage Direct In 1941, the first contract for a commercial HVDC Current (HVDC) History system was signed in Germany: 60 MW were to be supplied to the city of Berlin via an underground The transmission and distribution of electrical energy cable of 115 km length. The system with ±200 kV started with direct current. In 1882, a 50-km-long and 150 A was ready for energizing in 1945. It was 2-kV DC transmission line was built between Miesbach never put into operation. and Munich in Germany. At that time, conversion between reasonable consumer voltages and higher Since then, several large HVDC systems have been DC transmission voltages could only be realized by realized with mercury arc valves.
    [Show full text]
  • HVDC Transmission PDF
    High Voltage Direct Current Transmission – Proven Technology for Power Exchange 2 Contents Chapter Theme Page Contents 3 1Why High Voltage Direct Current? 4 2 Main Types of HVDC Schemes 6 3 Converter Theory 8 4Principle Arrangement of an 11 HVDC Transmission Project 5 Main Components 14 5.1 Thyristor Valves 15 5.2 Converter Transformer 18 5.3 Smoothing Reactor 21 5.4 Harmonic Filters22 5.4.1 AC Harmonic Filter 23 5.4.2 DC Harmonic Filter 25 5.4.3 Active Harmonic Filter 26 5.5 Surge Arrester 28 5.6 DC Transmission Circuit 5.6.1 DC Transmission Line 31 5.6.2 DC Cable 33 5.6.3 High Speed DC Switches 34 5.6.4 Earth Electrode 36 5.7 Control & Protection 38 6System Studies, Digital Models, 45 Design Specifications 7Project Management 46 3 1 Why High Voltage Direct Current ? 1.1 Highlights from the High Line-Commutated Current Sourced Self-Commutated Voltage Sourced Voltage Direct Current (HVDC) History Converters Converters The transmission and distribution of The invention of mercury arc rectifiers in Voltage sourced converters require electrical energy started with direct the nineteen-thirties made the design of semiconductor devices with turn-off current. In 1882, a 50-km-long 2-kV DC line-commutated current sourced capability. The development of Insulated transmission line was built between converters possible. Gate Bipolar Transistors (IGBT) with high Miesbach and Munich in Germany. voltage ratings have accelerated the At that time, conversion between In 1941, the first contract for a commer- development of voltage sourced reasonable consumer voltages and cial HVDC system was signed in converters for HVDC applications in the higher DC transmission voltages could Germany: 60 MW were to be supplied lower power range.
    [Show full text]
  • Construction Plan
    Construction Plan for the Revision 1.0 June 2016 Schedule TFS-4 Page 1 of 140 Construction Plan – Rev. 1.0 June 2016 This page intentionally left blank. ii Schedule TFS-4 Page 2 of 140 Construction Plan – Rev. 1.0 June 2016 Table of Contents Section Page List of Tables ........................................................................................................................................ v List of Figures ..................................................................................................................................... vii Acronyms and Abbreviations .......................................................................................................... ix 1.0 Project Overview .................................................................................................... 1 2.0 Project Description ................................................................................................ 4 2.1 Converter Stations and Other Terminal Facilities ......................................................... 4 2.1.1 Elements Common to the Converter Stations ................................................. 4 2.1.2 Kansas Converter Station and Other Terminal Facilities ............................... 5 2.1.3 Illinois Converter Station and Other Terminal Facilities ................................ 6 2.1.4 Missouri Converter Station and Other Terminal Facilities ............................ 6 2.2 HVDC Transmission Line ...................................................................................................
    [Show full text]
  • A Cascaded DC-AC-AC Grid-Tied Converter for PV Plants with AC-Link
    electronics Article A Cascaded DC-AC-AC Grid-Tied Converter for PV Plants with AC-Link Manuel A. Barrios 1,2,* ,Víctor Cárdenas 1 , Jose M. Sandoval 1, Josep M. Guerrero 2,* and Juan C. Vasquez 2 1 Engineering Department, Autonomous University of San Luis Potosi, Dr. Manuel Nava No. 8, Col. Zona Universitaria Poniente, San Luis Potosí 78290, Mexico; [email protected] (V.C.); [email protected] (J.M.S.) 2 Center for Research on Microgrids (CROM), Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; [email protected] * Correspondence: [email protected] (M.A.B.); [email protected] (J.M.G.) Abstract: Cascaded multilevel converters based on medium-frequency (MF) AC-links have been proposed as alternatives to the traditional low-voltage inverter, which uses a bulky low-frequency transformer step-up voltage to medium voltage (MV) levels. In this paper, a three-phase cascaded DC-AC-AC converter with AC-link for medium-voltage applications is proposed. Three stages integrate each DC-AC-AC converter (cell): a MF square voltage generator; a MF transformer with four windings; and an AC-AC converter. Then, k DC-AC-AC converters are cascaded to generate the multilevel topology. This converter’s topological structure avoids the per-phase imbalance; this simplifies the control and reduces the problem only to solve the per-cell unbalance. Two sets of simulations were performed to verify the converter’s operation (off-grid and grid-connected modes). Finally, the papers present two reduced preliminary laboratory prototypes, one validating the cascaded configuration and the other validating the three-phase configuration.
    [Show full text]
  • Introducing HVDC What Is HVDC?
    Brochure Introducing HVDC What is HVDC? High-voltage direct current (HVDC) transmission is an efficient technology designed to deliver large amounts of electricity over long distances. The technology is a key component in the future energy system based on renewable energy sources. 3 2 4 1 3 1 HVDC Converter station Rectifier | 2 HVDC converter station Inverter | 3 AC | 4 DC What are the benefits of HVDC? centers where it is needed, hundreds or even thousands of HVDC systems can transmit more electrical power over long- kilometers away. Once installed, HVDC transmission systems er distances than a similar AC transmission system, which become an integral part of the electrical power system, means fewer transmission lines are needed, saving both improving the overall stability and reliability. money and land. In addition to significantly lowering electrical losses over long distances, HVDC transmissionis also very The HVDC systems core component is the power converter, stable and easily controlled, and can stabilize and intercon- which serves as the interface with the AC transmission sys- nect AC power networks that are otherwise incompatible. tem. The conversion from AC to DC, and vice versa, is achieved by controllable electronic switches, called valves. The HVDC market is growing rapidly and has become an important part of many transmission grids; not least because it can connect remote sources of electrical generation – often emissions-free renewable sources like hydro or wind – to load 2 Introducing HVDC Why use HVDC? There are a number of criteria which help to decide if AC or DC is best suited for a particular customer application, including: investment costs, system losses, system availability, power and voltage levels, means of transmission, availability of land and AC network support.
    [Show full text]
  • Steady-State Operation Area of VSC-HVDC Converter Station Connecting Renewable Energy Cluster by Isolated Network
    E3S Web of Conferences 182, 02003 (2020) https://doi.org/10.1051/e3sconf/202018202003 CPEEE 2020 Steady-state Operation Area of VSC-HVDC Converter Station Connecting Renewable Energy Cluster by Isolated Network Wenyuan Xian1,2, Ran Ding3, Ying Qiao2,*, Zongxiang Lu2, Shangqiang Li2, and Hong Lin1 1School of Electrical Engineering, Xinjiang University, Urumqi 830047, China 2State Key Lab of Control and Simulation of Power Systems and Generation Equipment (Department of Electrical Engineering, Tsinghua University), Haidian District, Beijing 100084, China 3 State Grid Jibei Electric Power Company, Xicheng District, Beijing 100053, China Abstract. When the large-scale renewable power island is connected to VSC-HVDC transmission system, we should figure out the steady-state operation area of VSC-HVDC converter station. Based on the equivalent model of renewable energy island, the constraints of VSC-HVDC converter station are analyzed, and a fast method for calculating steady-state operation area of converter station is presented in this paper. The influence of equivalent line impedance of renewable energy island, transformer ratio of converter station and voltage setting value of grid-connected point on steady-state operation area of converter station is analyzed. And the three-dimensional view of the steady-state operation area of the converter station under different grid-connected voltage is depicted. 1 Introduction operation modes are given[6]. [7] analyzed the influence of AC network strength on the steady-state VSC-HVDC transmission technology has obvious characteristics of VSC-HVDC transmission system. [8] advantages in clean energy grid-connected, island power studied the influence of short circuit ratio of AC system, supply, offshore platform power supply and other shunt reactive compensation capacitor, converter technical fields([1],[2]).
    [Show full text]
  • New Technologies in Hvdc Converter Design
    NEW TECHNOLOGIES IN HVDC CONVERTER DESIGN Alf Persson Lennart Carlsson Mikael Åberg ABB Power Systems, Sweden ABB Power Systems, Sweden ABB Power Systems, Sweden 1. SUMMARY HVDC technology took a big step forward around 20 years ago when thyristor valves succeeded the mercury arc valves previously used. The converter station concept introduced at that time, however, has remained practically unchanged since then. Figure 1: Single line diagram of a monopolar station with ® The time has now come for a further major advance in CCC and ConTune AC filter. technology. The introduction of new concepts will change Consequently, many other main circuit components, in whole approach to building an HVDC station. Even though addition to the filter components, such as switching this innovation may not be quite as significant as when equipment, CTs, etc, must be installed. The filters will thyristor valves were introduced, the new features will therefore take up considerable space in a converter sta- greatly improve the operating characteristics of HVDC tion. transmissions and reduce the size and complexity of converter stations. 2.2 De-coupling of filtering and reactive power supply The new generation of converter stations is now likely to include some of the following features: The development of new, effective AC filters, described - a new type of converter circuit, the capacitor commutated in a separate section of this paper, makes it possible to converter (CCC) perform the filtering function through a single filter bank - actively tuned AC filters with small Mvar rating. The new AC filter thus allows de- - air insulated outdoor thyristor valves coupling of the functions of the filtering and the reactive - active DC filters.
    [Show full text]
  • Impact of Converter Interfaced Generation and Load on Grid Performance
    Impact of Converter Interfaced Generation and Load on Grid Performance by Deepak Ramasubramanian A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved January 2017 by the Graduate Supervisory Committee: Vijay Vittal, Chair John Undrill Raja Ayyanar Jiangchao Qin ARIZONA STATE UNIVERSITY May 2017 ABSTRACT Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possi- bility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been en- countered till now.
    [Show full text]
  • HVDC Links in System Operations
    HVDC Links in System Operations Technical paper 2 December 2019 ENTSO-E AISBL • Avenue de Cortenbergh 100 • 1000 Brussels • Belgium • Tel + 32 2 741 09 50 • Fax + 32 2 741 09 51 • [email protected] • www. entsoe.eu HVDC Links in System Operations Executive Summary High-voltage direct current (HVDC) is an increasingly important technology for transferring electrical power in the European transmission grid. New HVDC links play a key role in future development plans for the European transmission grid and internal market. The use of the advanced functionalities of these HVDC links in system operations is essential for the secure and efficient operation of the grid. ENTSO-E recognizes the importance of the functionalities and ancillary services that can be provided by HVDC links. Several of these functionalities are inherent within the HVDC technology and therefore the power system can benefit from the efficiency they can readily provide. The use of the functionalities of the HVDC links in system operations contributes to meeting current and future challenges, such as decarbonisation and large scale integration of Renewable Energy Sources (RES) which are largely connected via Power Electronics (PE). Such technologies result in the decommissioning of classic rotating power plants and the disappearance of the physical characteristics the power system was built on. In addition, the HVDC technology may support the realisation of an integrated European energy market and the sharing of ancillary services between countries and synchronous areas. Today HVDC links are typically used for connecting two asynchronous, non-embedded AC systems and for long-distance bulk power transmission using both overhead land lines and submarine cables.
    [Show full text]
  • Installation and Operating Instructions for Trained Personnel, Certified by Woodward
    Installation and operating instructions for trained personnel, certified by Woodward (Exemplary illustration) - MP1 Frequency converter system Document no.: 9943-1707 Revision: B EN GB Original operation manual This document is updated regularly. ► Always use the current version of the document. You can find the current version of the document on the Woodward website: www.woodward.com/publications Document history Woodward document revisions • The first released version of a document has the revision acronym New. • All further revisions are identified alphabetically from A to Z. • After the revision Z, AA, AB, AC etc. follows. General corrections Date Version Modification carried out by 16.10.15 A Update document C. Aan de Brugh 16.10.15 B Update document C. Aan de Brugh Product specific corrections Date Version Modification carried out by Table of contents Table of contents 1 Safety .................................................................................................. 6 1.1 Classification of the warning notices with relation to actions ..................................... 6 1.2 Intended use ...................................................................................................................... 6 1.3 General safety instructions .............................................................................................. 7 1.3.1 Danger of electrocution ....................................................................................................... 7 1.3.2 Material damage by electrostatic discharge .......................................................................
    [Show full text]
  • Konti-Skan: Lindome Converter Station GE Renews Pole 1 of the HVDC Link Between Sweden and Denmark
    GE Grid Solutions Konti-Skan: Lindome Converter Station GE renews Pole 1 of the HVDC link between Sweden and Denmark. The Lindome HVDC Converter Station of the Konti-Skan interconnection Imagination at work HVDC Line positioned between AC transmission lines Customer Challenges The Customers SVENSKA KRAFTNÄT is the owner and operator of Sweden's transmission network responsible for the national electricity grid and the country's 400 and 220 kV power lines. ENERGINET.DK is the Danish counterpart, who owns and operates the 400 kV transmission network for Denmark and is responsible for the overall security of the supply, including connections to neighbouring countries. Mercury Arc to Innovative Thyristor Valve Upgrade Originally built in the 1960s, the mercury arc HVDC system of Pole 1 of the Konti-Skan HVDC undersea electricity transmission link was nearing the end of its design lifetime. It was scheduled for replacement and upgrade to match the power rating of Pole 2 in the city of Lindome, built in the 1980s. Innovative Solutions for a Changing Energy World GE was selected to deliver a cost effective replacement with its innovative HVDC thyristor valve technology replacing the old The scope of the Lindome turnkey substation included: mercury arc system. This important re-investment program ' Valve hall with H400 series valves covered the complete renewal of the pole 1 converter in Vester ' An auxiliary service building Hassing, Denmark using state-of-the-art technologies. ' Two 3-phase transformers In Sweden, a new pole was added at the Lindome converter ' AC and DC harmonic filters station with the same specifications as Vester Hassing.
    [Show full text]
  • Lecture Notes On
    LECTURE NOTES ON HVDC TRANSMISSION 2019 – 2020 M.Tech I Semester (IARE-R18) Dr. P Sridhar, Professor Department of Electrical and Electronics Engineering INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 P a g e 1 | 57 UNIT – I GENERAL ASPECTS OF HVDC TRANSMISSION 1.1 INTRODUCTION: A high-voltage, direct current (HVDC) electric power transmission system (also called a power super highway or an electrical super highway) uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current (AC) systems.For long- distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be justified, due to other benefits of direct currentlinks. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between source and load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing exchange of power between incompatible networks. Power Transmission was initially carried out in the early 1880s using Direct Current (DC). With the availability of transformers (for stepping up the voltage for transmission over long distances and for stepping down the voltage for safe use), the development of robust induction motor (to serve the users of rotary power), the availability of the superior synchronous generator, and the facilities of converting AC to DC when required, AC gradually replaced DC.
    [Show full text]