Preparation and Crystal Structural Properties of Er3+–Exchanged GTS–Type Sodium Titanosilicate

Total Page:16

File Type:pdf, Size:1020Kb

Preparation and Crystal Structural Properties of Er3+–Exchanged GTS–Type Sodium Titanosilicate Journal of Mineralogical and Petrological Sciences, Volume 115, page 59–64, 2020 LETTER Preparation and crystal structural properties of Er3+–exchanged GTS–type sodium titanosilicate Keiko FUJIWARA, Naomi KAWATA and Akihiko NAKATSUKA Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube 755–8611, Japan Powder sample of GTS–type sodium titanosilicate (Na–GTS) was prepared using a hydrothermal method. The 3+ Er –exchanged forms [Na4(1−x)Er4x/3Ti4O4(SiO4)3·nH2O] of Na–GTS with the compositions up to x = 0.96 were obtained by shaking the single–phase sample of Na–GTS in the ErCl3 aqueous solutions (25 mL, 0.01–0.5 M) at 25 and 60 °C for 6 h. The Er3+–exchange experiments revealed that the Er3+–exchange amounts (x) increase with increasing the concentration of ErCl3 aqueous solutions and the higher treatment temperature more effectively promotes ion–exchange. Thermogravimetry–differential thermal analysis (TG–DTA) measurements showed that + 3+ the exchange of Na for Er decreases the dehydration temperature and the H2O content. The simulation of powder X–ray diffraction (XRD) patterns suggests that Er3+ ions occupy both 4e and 6g sites in the assumed psuedocubic structure. Keywords: Hydrothermal synthesis, Er3+–exchanged Na–GTS, Microporous crystal, Cation distribution INTRODUCTION Microporous crystals such as zeolites are widely used in various applications because of their excellent abilities as molecular sieve, catalysts, absorbents, ion–exchangers, and heat–exchangers. Recently, grace titanosilicates (GTS) have attracted much attention as promising ion–exchangers. The GTS is a microporous titanosilicate as a structural an- alogue of the cubic mineral pharmacosiderite KFe4 (AsO4)3(OH)4·6–7H2O and has a three dimensional tun- nel–type structure. The Na–GTS, Na4Ti4O4(SiO4)3·6H2O, crystallizes in a rhombohedral phase with space group R3m; its unit cell [a = 7.8123(6) Å, α = 88.794(9)°; Da- dachov and Harrison, 1997] is very close to cubic cell and often described as a pseudocubic cell. Other forms such as K–GTS, HK3Ti4O4(SiO4)3·4H2O, have the cubic P43m symmetry [a = 7.7644(3) Å; Behrens et al., 1996]. In Figure 1. Framework structure of Na–GTS projected along [010] – GTS type structures (Fig. 1), four TiO6 octahedra linked (Dadachov and Harrison, 1997). Color version is available on- by edge–sharing form a Ti4O16 cluster; the clusters are line from https://doi.org/10.2465/jmps.191002. linked through SiO4 tetrahedra to form a three–dimension- al framework with an interconnected pore system involv- ions such as Na+ and K+, as in zeolites. ing cavities of 8–ring channels. The cavities are filled with The ion–exchange properties of GTS for Cs+ or di- water molecules and exchangeable extra–framework cat- valent cations such as Co2+,Sr2+, and Ba2+ have been investigated for the application to the radioactive waste doi:10.2465/jmps.191002 treatments (Behrens et al., 1996; Behrens and Clearfield, A. Nakatsuka, tuka@yamaguchi–u.ac.jp Corresponding author 1997; Fujiwara et al., 2013). These studies provide im- 60 K. Fujiwara, N. Kawata and A. Nakatsuka portant insights into the development of the treatment of the cationic contents in the obtained samples. The ex- materials of the radioactive waste water that continues perimental procedure and techniques for AAS are the to accumulate at the crippled Fukushima Daiichi Nuclear same as those described by Fujiwara and Mizota (2001), Power Plant. Meanwhile, the rare–earth ion exchanged who studied the ion–exchange of A–type zeolite. The ion– GTS is of interest as promising optical and catalytic ma- exchange amounts of the Er3+–exchanged forms, i.e., the x terials, as well as the rare–earth ion exchanged zeolites values in Na4(1−x)Er4x/3Ti4O4(SiO4)3·nH2O(0≤ x ≤ 1) (Misono and Kondo, 1991; Chen et al., 2000). Because were evaluated from AAS for Na+ eluted into the super- of such importance, our recent study (Fujiwara et al., natant solutions from Na–GTS after the ion–exchange ex- 2017) investigated the Er3+–exchange properties of Na– periments. Here, x was defined as n(Na)/4n(Na–GTS) 3+ GTS in ErCl3 aqueous solutions up to 0.1 M at 25 °C; based on the ion–exchange reaction 4x/3Er +Na4Ti4 3+ + consequently, Er –exchenged Na–GTS, Na4(1−x)Er4x/3 O4(SiO4)3 → Na4(1−x)Er4x/3Ti4O4(SiO4)3 +4xNa ; n(Na– Ti4O4(SiO4)3·nH2O(0≤ x ≤ 1), was only prepared in GTS) is the amounts of as–prepared Na–GTS used in the compositions of x < 0.7. In the present study, we in- the ion–exchange experiments, and n(Na) is the amounts vestigate Er3+–exchange properties of Na–GTS under of Na+ in the supernatant solutions after the ion–exchange higher temperature and higher Er3+–concentration condi- experiments. The TG–DTA measurements using a MAC tions to examine whether these conditions increase the Science TG–DTA2000S analyzer were performed in the extent of cation exchange (x ≥ 0.7). In addition, the cation air for the determination of H2O contents and the exami- distribution model of Er3+–exchanged GTS is also dis- nation of dehydration process in the samples. The heating cussed based on the simulation of powder XRD patterns. rate of 10 °C/min and the cooling rate of 20 °C/min were applied in the TG–DTA measurements. The phase identi- EXPERIMENTAL fication and structural characterization of the obtained samples were performed by powder XRD measurements Sample preparation using a Rigaku RINT2200 diffractometer. The program Powder Cell (Kraus and Nolze, 1996) was used for the The Na–GTS, Na4Ti4O4(SiO4)3·6H2O, was prepared by a simulation of powder XRD patterns. hydrothermal method according to the procedure report- ed by the previous studies (Kostov–Kytin et al., 2007; RESULTS AND DISCUSSION Fujiwara et al., 2010). The starting materials were special grade reagents of NaOH (FUJIFILM Wako Pure Chemi- Ion–exchange amounts for Er3+ cal Co.), amorphous SiO2 fine powder (Merck KGaA), 3+ 3+ TiCl4 aqueous solution (Toho Titanium Co., Ltd), and Figure 2 shows the Er compositions (x) of the Er –ex- HCl (FUJIFILM Wako Pure Chemical Co.). The mixture changed Na–GTS, Na4(1−x)Er4x/3Ti4O4(SiO4)3·nH2O(0≤ with the compositional ratios of TiO2/SiO2 = 0.320 and Na2O/TiO2 = 5.625 was heat–treated at 100 °C for 24 h in a closed pressure–resistant vessel. The obtained sample was filtered with ultrapure water and dried at 80 °C for 24 h to gain Na–GTS. The Er3+–exchanged forms were ob- tained by shaking the prepared Na–GTS (0.5 g) in the ErCl3 aqueous solutions (25 mL) at 25 and 60 °C for 6 h; the aqueous solutions were produced by dissolving 3N–grade ErCl3 powder (Rare Metallic Co., Ltd) in ultra- 3+ pure water. The concentrations of Er (CEr) in the aque- ous solutions were varied between 0.01 and 0.5 M, where the 25 mL of 0.0364 M ErCl3 aqueous solution is theo- ritically necessary for complete exchange of Na+ in Na– GTS for Er3+. The obtained samples were filtrated, wash- ed and dried at 80 °C for 24 h. 3+ 3+ Characterization Figure 2. Er compositions (x) of the Er –exchanged forms pre- pared at each temperature of 25 and 60 °C as a function of CEr. The x values in 0 < CEr ≤ 0.1 M at 25 °C reported in our pre- Atomic absorption spectrometry (AAS) using a Hitachi vious study (Fujiwara et al., 2017) are reanalyzed and their re- Z–5310 spectrophotometer was employed for analyses vised values are quoted in the present study. Preparation and crystal structural properties of Er–exchanged Na–GTS 61 Figure 3. TG and DTA curves of as–prepared Na–GTS and its Er3+–exchanged forms prepared at each temperature of 25 and 60 °C. The data in 0 < x ≤ 0.68 at 25 °C are quoted from our previous study (Fujiwara et al., 2017), where the revised x values are provided as in Figure 2. x ≤ 1), prepared at each temperature as a function of the bly effective for promotion of ion–exchange, as well as in concentration of ErCl3 aqueous solution (CEr). As shown CEr. The present AAS result of x ≈ 1 indicates that the 3+ + in the figure, the increase in CEr increases the Er –ex- amount of Na eluted into the supernatant solutions from change amounts (x). In our previous study (Fujiwara et Na–GTS after the ion–exchange experiment is approxi- al., 2017), the x value only reached 0.68 at 25 °C even mately 4 ions per formula unit. This suggests that there + under a condition of CEr = 0.1 M, much higher than the are no significant amounts of hydronium (H3O ) and hy- + minimum CEr (= 0.0364 M) being necessary for complete drogen (H ) ions in the present Na–GTS, in contrast to the ion–exchange of x = 1. However, the present study shows K–GTS reported by Behrens et al. (1996). that the further increase in CEr to 0.5 M successfully in- creases the x value to 0.80 at 25 °C. Moreover, the Er3+– Dehydration behaviour and water content exchange treatments up to CEr = 0.5 M at a higher temper- ature of 60 °C enhance the x values up to 0.96, very close Figure 3 show TG and DTA curves of the Er3+–ex- to unity corresponding to the complete Er3+–exchange. changed samples prepared under each condition, together Thus, the increase in treatment temperature is considera- with those of as–prepared Na–GTS sample. The TG 62 K. Fujiwara, N. Kawata and A.
Recommended publications
  • The Structure and Composition of the Mineral Pharmacosiderite
    Zeitschrift fUr Kristallographie, Bd. 125, S. 92-108 (1967) The structure and composition of the mineral pharmacosiderite By M. J. BUERGER, W. A. DOLLASE* and ISABEL GARAYCOCHEA-WITTKE** Massachusetts Institute of Technology, Cambridge, Massachusetts Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received April 17, 1967) Auszug Eine Struktur von Pharmakosiderit wurde von ZEMANN 1947 vorgeschlagen. An einem Pharmakosiderit von Cornwall untersuchten wir die Struktur von neuem. Obwohl die starken Reflexe mit P43m bei a = 7,98 A im Einklang sind, in Ubereinstimmung mit ZEMANNS Ergebnissen, verlangen doch einige schwa- chere Reflexe eine groJ3ere Elementarzelle, was zusammen mit einer schwachen Doppelbrechung auf eine geringere Symmetrie hinweist. Wegen der Inhomogeni- tat des Materials muJ3ten wir uns auf die Untersuchung einer gemittelten Struk- tur, bezogen auf eine isometrische Zelle mit a = 7,98 A, beschranken. Wir konn- ten die Struktur bis zu R = 6!% verfeinern. Unsere Untersuchung bestatigt das von ZEMANN vorgeschlagene Strukturgerust, andert jedoch etwas an der Aus- fUllung der offenen Raume, an der keine Alkaliatome beteiligt sind. Wenn die Struktur auf die isometrische Zelle mit a = 7,98 A bezogen wird, so konnen die Wassermolekiile nur teilweise die Punktlagen besetzen, denen sie zugeordnet sind. Wir schlieJ3en daraus, daJ3 das Pharmakosiderit-Gerust kontinuierlich ist, das Wasser in den Hohlraumen jedoch die Symmetrie verringert, und daJ3 sich der einheitlich erscheinende Kristall in Wirklichkeit aus Bereichen zusanunen- setzt, in denen die Anordnung der Wassermolekule einheitlich ist, aber an den Bereichsgrenzen Zwillingsorientierungen aufweist. Es wird gezeigt, daJ3 bei Behandlung von Pharmakosiderit mit Alkalihydro- xyd-Losungen Alkaliatome in die Struktur eindringen.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • THE SINGLE-CRYSTAL X-RAY STRUCTURES of BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE
    1477 The Canadian Mineralogist Vol. 48, pp. 1477-1485 (2010) DOI : 10.3749/canmin.48.5.1477 THE SINGLE-CRYSTAL X-RAY STRUCTURES OF BARIOPHARMACOSIDERITE-C, BARIOPHARMACOSIDERITE-Q and NATROPHARMACOSIDERITE SIMON L. HAGER, PETER LEVERETT§ AND PETER A. WILLIAMS School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia STUART J. MILLS Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada DavID E. HIBBS School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia MATI RAUDSEPP Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ANTHONY R. KAMPF Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA WILLIAM D. BIRCH Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia ABSTRACT The crystal structures of two polymorphic forms of bariopharmacosiderite have been determined. Bariopharmacosiderite-C, from Robinson’s Reef, Clunes, Victoria, Australia, (Ba0.47K0.04Na0.02)(Fe3.97Al0.03)[(As0.72P0.28)O4]3(OH)4•2.52H2O, is cubic, space group P43m, a 7.942(1) Å, Z = 1, R = 0.089. Bariopharmacosiderite-Q, from the Sunny Corner mine, Sunny Corner, New South Wales, Australia, Ba0.5Fe4(OH)4(AsO4)3•6.16H2O, is tetragonal, space group P42m, a 7.947(1), c 8.049(2) Å, Z = 1, R = 0.050. In the cubic polymorph, Ba ions are disordered over all faces of the unit cell, whereas in the tetragonal polymorph, Ba ions are centered on the 001 face.
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 96, pages 1654–1661, 2011 New Mineral Names* PAULA C. PIILONEN,1,† RALPH ROWE,1 GLENN POIRIER,1 AND KIMBERLY T. TAIT2 1Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2Department of Natural History, Royal Ontario Museum,100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada NEW MINERALS The streak is white and the Mohs hardness is estimated to be about 1½. Thin crystal fragments are flexible, but not elastic. The fracture is irregular and there are three cleavage directions: {001} AFMITE* perfect, {010} and {110} good. The mineral is non-fluorescent A.R. Kampf, S.J. Mills, G.R Rossman, I.M. Steele, J.J. Pluth, under all wavelengths of ultraviolet radiation. The density mea- sured by sink-float in aqueous solution of sodium polytungstate and G. Favreau (2011) Afmite, Al3(OH)4(H2O)3(PO4) is 2.39(3) g/cm3. The calculated density, based on the empirical (PO3OH)·H2O, a new mineral from Fumade, Tarn, France: de- 3 scription and crystal structure. Eur. J. Mineral., 23, 269–277. formula and single-crystal cell, is 2.391 g/cm and that for the ideal formula is 2.394 g/cm3. Afmite is found at Fumade, Castelnau-de-Brassac, Tarn, Electron microprobe analyses provided Al2O3 40.20 and France (43°39′30″N, 2°29′58″E). The phosphates occur in P2O5 38.84 wt% and CHN analyses provided H2O 25.64 wt%, fractures and solution cavities in shale/siltstone exposed in total 103.68 wt%.
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • Cu-Rich Members of the Beudantite–Segnitite Series from the Krupka Ore District, the Krušné Hory Mountains, Czech Republic
    Journal of Geosciences, 54 (2009), 355–371 DOI: 10.3190/jgeosci.055 Original paper Cu-rich members of the beudantite–segnitite series from the Krupka ore district, the Krušné hory Mountains, Czech Republic Jiří SeJkOra1*, Jiří ŠkOvíra2, Jiří ČeJka1, Jakub PláŠIl1 1 Department of Mineralogy and Petrology, National museum, Václavské nám. 68, 115 79 Prague 1, Czech Republic; [email protected] 2 Martinka, 417 41 Krupka III, Czech Republic * Corresponding author Copper-rich members of the beudantite–segnitite series (belonging to the alunite supergroup) were found at the Krupka deposit, Krušné hory Mountains, Czech Republic. They form yellow-green irregular to botryoidal aggregates up to 5 mm in size. Well-formed trigonal crystals up to 15 μm in length are rare. Chemical analyses revealed elevated Cu contents up 2+ to 0.90 apfu. Comparably high Cu contents were known until now only in the plumbojarosite–beaverite series. The Cu 3+ 3+ 2+ ion enters the B position in the structure of the alunite supergroup minerals via the heterovalent substitution Fe Cu –1→ 3– 2– 3 (AsO4) (SO4) –1 . The unit-cell parameters (space group R-3m) a = 7.3265(7), c = 17.097(2) Å, V = 794.8(1) Å were determined for compositionally relatively homogeneous beudantite (0.35 – 0.60 apfu Cu) with the following average empirical formula: Pb1.00(Fe2.46Cu0.42Al0.13Zn0.01)Σ3.02 [(SO4)0.89(AsO3OH)0.72(AsO4)0.34(PO4)0.05]Σ2.00 [(OH)6.19F0.04]Σ6.23. Interpretation of thermogravimetric and infrared vibrational data is also presented. The Cu-rich members of the beudan- tite–segnitite series are accompanied by mimetite, scorodite, pharmacosiderite, cesàrolite and carminite.
    [Show full text]
  • Talmessite from the Uriya Deposit at the Kiura Mining Area, Oita Prefecture, Japan
    116 Journal ofM. Mineralogical Ohnishi, N. Shimobayashi, and Petrological S. Kishi, Sciences, M. Tanabe Volume and 108, S. pageKobayashi 116─ 120, 2013 LETTER Talmessite from the Uriya deposit at the Kiura mining area, Oita Prefecture, Japan * ** *** Masayuki OHNISHI , Norimasa SHIMOBAYASHI , Shigetomo KISHI , † § Mitsuo TANABE and Shoichi KOBAYASHI * 12-43 Takehana Ougi-cho, Yamashina-ku, Kyoto 607-8082, Japan **Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan *** Kamisaibara Junior High School, 1320 Kamisaibara, Kagamino-cho, Tomada-gun, Okayama 708-0601, Japan † 2058-3 Niimi, Niimi, Okayama 718-0011, Japan § Department of Applied Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan Talmessite was found in veinlets (approximately 1 mm wide) cutting into massive limonite in the oxidized zone of the Uriya deposit, Kiura mining area, Oita Prefecture, Japan. It occurs as aggregates of granular crystals up to 10 μm in diameter and as botryoidal aggregates up to 0.5 mm in diameter, in association with arseniosiderite, and aragonite. The talmessite is white to colorless, transparent, and has a vitreous luster. The unit-cell parame- ters refined from powder X-ray diffraction patterns are a = 5.905(3), b = 6.989(3), c = 5.567(4) Å, α = 96.99(3), β = 108.97(4), γ = 108.15(4)°, and Z = 1. Electron microprobe analyses gave the empirical formula Ca2.15(Mg0.84 Mn0.05Zn0.02Fe0.01Co0.01Ni0.01)∑0.94(AsO4)1.91·2H2O on the basis of total cations = 5 apfu (water content calculated as 2 H2O pfu).
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 71, pages 227-232, 1986 NEW MINERAL NAMES* Pers J. Dulw, Gsoncr Y. CHao, JonN J. FrrzperRrcr, RrcHeno H. LaNcr-nv, MIcHeer- FrerscHnn.aNo JRNBIA. Zncznn Caratiite* sonian Institution. Type material is at the Smithsonian Institu- tion under cataloguenumbers 14981I and 150341.R.H.L. A. M. Clark, E. E. Fejer, and A. G. Couper (1984) Caratiite, a new sulphate-chlorideofcopper and potassium,from the lavas of the 1869 Vesuvius eruption. Mineralogical Magazine, 48, Georgechaoite* 537-539. R. C. Boggsand S. Ghose (1985) GeorgechaoiteNaKZrSi3Or' Caratiite is a sulphate-chloride of potassium and copper with 2HrO, a new mineral speciesfrom Wind Mountain, New Mex- ideal formula K4Cu4Or(SO4).MeCl(where Me : Na and,zorCu); ico. Canadian Mineralogist, 23, I-4. it formed as fine greenacicular crystalsin lava of the 1869 erup- S. Ghose and P. Thakur (1985) The crystal structure of george- tion of Mt. Vesuvius,Naples, Italy. Caratiite is tetragonal,space chaoite NaKZrSi3Or.2HrO. Canadian Mineralogist, 23, 5-10. group14; a : 13.60(2),c : a.98(l) A, Z:2.The strongestlines of the powder partern arc ld A, I, hkll: 9.61(l00Xl l0); Electron microprobe analysis yields SiO, 43.17, 7-xO229.51, 6.80(80X200); 4.296(60X3 I 0); 3.0I 5( 100b)(a 20,32r); 2.747 (7 0) NarO 7.42,IGO I1.28, HrO 8.63,sum 100.010/0,corresponding (4 I t); 2.673(60X5 I 0); 2.478(60)(002); 2. 3 8 8(70Xa 3 l, 50I ); to empirical formula Na, orl(oru(Zro rrTio o,Feo o,)Si, or Oe' 2.
    [Show full text]
  • REVISION 1 Mineralogical Controls on Antimony and Arsenic Mobility
    1 REVISION 1 2 Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite 3 weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, 4 Slovakia 5 Anežka Borčinová Radková1 *, Heather Jamieson1, Bronislava Lalinská-Voleková2, Juraj 6 Majzlan3, Martin Števko4, Martin Chovan5 7 8 1Department of Geological Sciences and Geological Engineering, Queen's University, Miller 9 Hall, 36 Union Street, Kingston, K7L 3N6, Ontario, Canada 10 2Slovak National Museum, Natural History Museum, Vajanského nábr. 2, P.O.BOX 13, 810 06 11 Bratislava, Slovakia 12 3Institute of Geosciences, Burgweg 11, Friedrich-Schiller University, D–07749 Jena, Germany 13 4Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, 6 14 Mlynska dolina G, SK-842 15 Bratislava, Slovakia 15 5 Institute of Geological Engineering, Technical University of Ostrava, 17. listopadu, 16 70833 Ostrava-Poruba, Czech Republic 17 18 *corresponding author: [email protected] 1 19 Abstract 20 The legacy of copper (Cu) mining at Špania Dolina-Piesky and Ľubietová-Svätodušná (central 21 Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony 22 (Sb), arsenic (As), Cu and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and 23 sulfosalt solid solution tetrahedrite-tennantite (Cu6[Cu4(Fe,Zn)2]Sb4S13 - 24 Cu6[Cu4(Fe,Zn)2]As4S13) that show widespread oxidation characteristic by olive-green color 25 secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb 26 contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron 27 microprobe analyses have been used to determine the mineralogy, chemical composition, 28 element distribution and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • 31St Annual Franklin-Sterling Mineral Exhibit
    granklin-Sterling al The Fluorescent Mineral Capitol of the World p Sat. & Sun., Oct. 3rd & 4th, 1987 c3,- .. ._ Sponsored by KIWANIS CLUB OF FRANKLIN FRANKLIN, NEW JERSEY MINERAL FREE, EDUCATIONAL, NON-PROFIT MINERAL MUSEUM O IN MEMORIUM LEE. S. ARESON w 1916 - 1987 Collector - Student - Missionary of Franklin N.J. History & Minerals C Honorary Member FOMS A Member North Jersey Min. Soc. S JENNIE ARESON E TEL. (914) 343-5051 21 IRWIN AVENUE MIDDLETOWN, NEW YORK 10940 eemohe tones mmmor, !POPP.) AMOIMOPOPOPPPOnOPOPOPPg,Mg ssos s ossossosossossosssss sssossoostssosesssossssssss The FRANKLIN - STERLING HILL MINERALS Edited from various sources by John L. Baum, Curator of the Franklin Mineral Museum, August, 1987, following the nomenclature of the 1983 Glossary of Mineral Species, and with special thanks to Dr. Pete J. Dunn. Acanthite Cahnite Fayalite Acmite Calcite Feitknechtite Actinolite Canavesite Ferrimolybdite Adamite Carrollite Ferristilpnomelane Adelite Caryopilite Ferroaxinite Akrochordite Celestine Flinkite Albite Celsian Fluoborite Allactite Cerussite Fluorapatite Allanite Chabazite Fluorapophyllite Alleghanyite Chalcocite Fluorite Almandine Chalcophanite Forsterite Analcime Chalcopyrite Franklinite Anatase Chamosite Friedelite Andradite Charlesite Anglesite Chlorophoenicite Gageite Anhydrite Chondrodite Gahnite Annabergite Chrysocolla Galena Anorthite Chrysotile Ganomalite Anorthoclase Clinochlore Ganophyllite Anthophyllite* Clinochry3otile Genthelvite Antigorite Clinoclase Gersdorffite Aragonite Clinohedrite Gerstmannite Arsenic
    [Show full text]