Protein “A. superbus venom factor 1”, present in the snake Austrelaps Superbus venom, which are harmful to the complementary immunity system, is analogous to the amino acid sequences found in SARS-CoV2. Cesar Fernandes Geraldes1 (Bachelor of Quality in Life - Mackenzie Presbyterian University and Civil Geotechnical Engineer - Uninove).1 1 Studying Post-Graduation in Data Science at Uninove, São Paulo, Brazil Correspondence:
[email protected] Abstract The study crossed the amino acids present in SARS-CoV-2, with the protein “A. Superbus venom factor 1” from the Lowland copperhead snake “Austrelaps Superbus”. The alignment of the sequences of pairs took place through matrix algorithms in high performance processing, by UGene software in terms of GNU. The “A. Superbus venom factor 1”, present in the snake Austrelaps Superbus venom, which are harmful to the complementary immunity system, is analogous to the amino acid sequences found in SARS-CoV2. The result found was of several sequences of amino acids with harmful potential, the most relevant being represented by the letters "LYID", "TAYA" and "NTLT". 1 Introduction As described on Wikipedia in the English version the lowland copperhead or lowlands copperhead Austrelaps superbus is a venomous snake species in the family Elapidae, found in southeastern Australia and Tasmania. It is commonly referred to as the copperhead. The complement system is a fundamental part of innate immunity and contributes to the removal of immune complexes and the activation of inflammatory processes. These proteins represent a fast and efficient means of protecting the host against invading microorganisms. Associations between complement and disease are observed in situations of complement deficiency, abnormalities in complement regulation and inflammation.2 Data science, through the use of computational algorithms and databases, has been a great ally in the development of new knowledge.