Orbiting Debris: a Space Environmental Problem (Part 4 Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
X-Ray Telescope
Early results of the Hitomi satellite Hiro Matsumoto Ux group & KMI Nagoya Univ.1 Outline •Hitomi instruments •Early scientific results –DM in Perseus –Turbulence in Perseus –others 2 Japanese history of X-ray satellites Launch, Feb. 17, 2016 Weight Suzaku Ginga ASCA Hitomi Tenma Hakucho Rocket 3 International collaboration More than 160 scientists from Japan/USA/Europe 4 Attitude anomaly Loss of communication (Mar. 26, 2016) spinning Gave up recovery (Apr. 28, 2016)5 Hitomi Obs. List Target Date Perseus Cluster of galaxies Feb. 25—27, 2016 Mar. 4—8, 2016 N132D Supernova remnants Mar. 8—11, 2016 IGR J16318-4848 Pulsar wind nebula Mar. 11—15, 2016 RXJ 1856-3754 Neutron star Mar. 17—19, 2016 Mar. 23—25, 2016 G21.5-0.9 Pulsar wind nebula Mar. 19—23, 2016 Crab Pulsar wind nebula Mar. 25, 2016 6 Scienfitic Instruments 7 4 systems Name X-Ray Telescope SXS Soft Micro-calorimeter (E<10keV) SXI Soft CCD (E<10keV) HXI Hard Si/CdTe (E<80keV) SGD --- Si/CdTe (Compton) 8 Wide energy range (0.3—600keV) HXT 1keV∼ 107K SXT SGD SXI HXI SXS 9 SXT + SXS (0.3—12keV) Soft X-ray Telescope Soft X-ray Spectrometer (X-ray micro-calorimeter) f=5.6m 10 Soft X-ray Spectrometer (SXS) FOV: 3′ × 3′ Δ푇 ∝ ℎ휈 6 × 6 pix 11 Energy Resolution Hitomi SXS Suzaku CCD Δ퐸 = 5 푒푉@ 6푘푒푉 (cf. CCD Δ퐸 = 130 푒푉)12 Before Hitomi: gratings Point source Extended Not good for extended objects 13 X-ray microcalorimeter Extended Non-dispersive type. Spatial extension doesn’t matter. -
Detecting, Tracking and Imaging Space Debris
r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’. -
Compendium of Space Debris Mitigation Standards Adopted by States and International Organizations”
COMPENDIUM SPACE DEBRIS MITIGATION STANDARDS ADOPTED BY STATES AND INTERNATIONAL ORGANIZATIONS 17 JUNE 2021 SPACE DEBRIS MITIGATION STANDARDS TABLE OF CONTENTS Introduction ............................................................................................................................................................... 4 Part 1. National Mechanisms Algeria ........................................................................................................................................................................ 5 Argentina .................................................................................................................................................................... 7 Australia (Updated on 17 January 2020) .................................................................................................................... 8 Austria (Updated on 21 March 2016) ...................................................................................................................... 10 Azerbaijan (Added on 6 February 2019) .................................................................................................................. 13 Belgium .................................................................................................................................................................... 14 Canada...................................................................................................................................................................... 16 Chile......................................................................................................................................................................... -
To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris
To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution. -
Building the Coolest X-Ray Satellite
National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1 -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
Space Debris
IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low -
Learning from Fukushima: Nuclear Power in East Asia
LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA LEARNING FROM FUKUSHIMA NUCLEAR POWER IN EAST ASIA EDITED BY PETER VAN NESS AND MEL GURTOV WITH CONTRIBUTIONS FROM ANDREW BLAKERS, MELY CABALLERO-ANTHONY, GLORIA KUANG-JUNG HSU, AMY KING, DOUG KOPLOW, ANDERS P. MØLLER, TIMOTHY A. MOUSSEAU, M. V. RAMANA, LAUREN RICHARDSON, KALMAN A. ROBERTSON, TILMAN A. RUFF, CHRISTINA STUART, TATSUJIRO SUZUKI, AND JULIUS CESAR I. TRAJANO Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Learning from Fukushima : nuclear power in East Asia / Peter Van Ness, Mel Gurtov, editors. ISBN: 9781760461393 (paperback) 9781760461409 (ebook) Subjects: Nuclear power plants--East Asia. Nuclear power plants--Risk assessment--East Asia. Nuclear power plants--Health aspects--East Asia. Nuclear power plants--East Asia--Evaluation. Other Creators/Contributors: Van Ness, Peter, editor. Gurtov, Melvin, editor. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press. Cover image: ‘Fukushima apple tree’ by Kristian Laemmle-Ruff. Near Fukushima City, 60 km from the Fukushima Daiichi Nuclear Power Plant, February 2014. The number in the artwork is the radioactivity level measured in the orchard—2.166 microsieverts per hour, around 20 times normal background radiation. This edition © 2017 ANU Press Contents Figures . vii Tables . ix Acronyms and abbreviations . -
Black Rain: the Burial of the Galilean Satellites in Irregular Satellite Debris
Black Rain: The Burial of the Galilean Satellites in Irregular Satellite Debris William F: Bottke Southwest Research Institute and NASA Lunar Science Institute 1050 Walnut St, Suite 300 Boulder, CO 80302 USA [email protected] David Vokrouhlick´y Institute of Astronomy, Charles University, Prague V Holeˇsoviˇck´ach 2 180 00 Prague 8, Czech Republic David Nesvorn´y Southwest Research Institute and NASA Lunar Science Institute 1050 Walnut St, Suite 300 Boulder, CO 80302 USA Jeff Moore NASA Ames Research Center Space Science Div., MS 245-3 Moffett Field, CA 94035 USA Prepared for Icarus June 20, 2012 { 2 { ABSTRACT Irregular satellites are dormant comet-like bodies that reside on distant pro- grade and retrograde orbits around the giant planets. They were possibly cap- tured during a violent reshuffling of the giant planets ∼ 4 Gy ago (Ga) as de- scribed by the so-called Nice model. As giant planet migration scattered tens of Earth masses of comet-like bodies throughout the Solar System, some found themselves near giant planets experiencing mutual encounters. In these cases, gravitational perturbations between the giant planets were often sufficient to capture the comet-like bodies onto irregular satellite-like orbits via three-body reactions. Modeling work suggests these events led to the capture of ∼ 0:001 lu- nar masses of comet-like objects on isotropic orbits around the giant planets. Roughly half of the population was readily lost by interactions with the Kozai resonance. The remaining half found themselves on orbits consistent with the known irregular satellites. From there, the bodies experienced substantial col- lisional evolution, enough to grind themselves down to their current low-mass states. -
10/2/95 Rev EXECUTIVE SUMMARY This Report, Entitled "Hazard
10/2/95 rev EXECUTIVE SUMMARY This report, entitled "Hazard Analysis of Commercial Space Transportation," is devoted to the review and discussion of generic hazards associated with the ground, launch, orbital and re-entry phases of space operations. Since the DOT Office of Commercial Space Transportation (OCST) has been charged with protecting the public health and safety by the Commercial Space Act of 1984 (P.L. 98-575), it must promulgate and enforce appropriate safety criteria and regulatory requirements for licensing the emerging commercial space launch industry. This report was sponsored by OCST to identify and assess prospective safety hazards associated with commercial launch activities, the involved equipment, facilities, personnel, public property, people and environment. The report presents, organizes and evaluates the technical information available in the public domain, pertaining to the nature, severity and control of prospective hazards and public risk exposure levels arising from commercial space launch activities. The US Government space- operational experience and risk control practices established at its National Ranges serve as the basis for this review and analysis. The report consists of three self-contained, but complementary, volumes focusing on Space Transportation: I. Operations; II. Hazards; and III. Risk Analysis. This Executive Summary is attached to all 3 volumes, with the text describing that volume highlighted. Volume I: Space Transportation Operations provides the technical background and terminology, as well as the issues and regulatory context, for understanding commercial space launch activities and the associated hazards. Chapter 1, The Context for a Hazard Analysis of Commercial Space Activities, discusses the purpose, scope and organization of the report in light of current national space policy and the DOT/OCST regulatory mission. -
Journal of Space Law
JOURNAL OF SPACE LAW VOLUME 24, NUMBER 2 1996 JOURNAL OF SPACE LAW A journal devoted to the legal problems arising out of human activities in outer space VOLUME 24 1996 NUMBERS 1 & 2 EDITORIAL BOARD AND ADVISORS BERGER, HAROLD GALLOWAY, ElLENE Philadelphia, Pennsylvania Washington, D.C. BOCKSTIEGEL, KARL·HEINZ HE, QIZHI Cologne, Germany Beijing, China BOUREr.. Y, MICHEL G. JASENTULIYANA, NANDASIRI Paris, France Vienna. Austria COCCA, ALDO ARMANDO KOPAL, VLADIMIR Buenes Aires, Argentina Prague, Czech Republic DEMBLING, PAUL G. McDOUGAL, MYRES S. Washington, D. C. New Haven. Connecticut DIEDERIKS·VERSCHOOR, IE. PH. VERESHCHETIN, V.S. Baarn, Holland Moscow. Russ~an Federation FASAN, ERNST ZANOTTI, ISIDORO N eunkirchen, Austria Washington, D.C. FINCH, EDWARD R., JR. New York, N.Y. STEPHEN GOROVE, Chairman Oxford, Mississippi All correspondance should be directed to the JOURNAL OF SPACE LAW, P.O. Box 308, University, MS 38677, USA. Tel./Fax: 601·234·2391. The 1997 subscription rates for individuals are $84.80 (domestic) and $89.80 (foreign) for two issues, including postage and handling The 1997 rates for organizations are $99.80 (domestic) and $104.80 (foreign) for two issues. Single issues may be ordered for $56 per issue. Copyright © JOURNAL OF SPACE LAW 1996. Suggested abbreviation: J. SPACE L. JOURNAL OF SPACE LAW A journal devoted to the legal problems arising out of human activities in outer space VOLUME 24 1996 NUMBER 2 CONTENTS In Memoriam ~ Tribute to Professor Dr. Daan Goedhuis. (N. J asentuliyana) I Articles Financing and Insurance Aspects of Spacecraft (I.H. Ph. Diederiks-Verschoor) 97 Are 'Stratospheric Platforms in Airspace or Outer Space? (M. -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology