Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1. -
E-Region Auroral Ionosphere Model
atmosphere Article AIM-E: E-Region Auroral Ionosphere Model Vera Nikolaeva 1,* , Evgeny Gordeev 2 , Tima Sergienko 3, Ludmila Makarova 1 and Andrey Kotikov 4 1 Arctic and Antarctic Research Institute, 199397 Saint Petersburg, Russia; [email protected] 2 Earth’s Physics Department, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 Swedish Institute of Space Physics, 981 28 Kiruna, Sweden; [email protected] 4 Saint Petersburg Branch of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN), 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: The auroral oval is the high-latitude region of the ionosphere characterized by strong vari- ability of its chemical composition due to precipitation of energetic particles from the magnetosphere. The complex nature of magnetospheric processes cause a wide range of dynamic variations in the auroral zone, which are difficult to forecast. Knowledge of electron concentrations in this highly turbulent region is of particular importance because it determines the propagation conditions for the radio waves. In this work we introduce the numerical model of the auroral E-region, which evaluates density variations of the 10 ionospheric species and 39 reactions initiated by both the solar extreme UV radiation and the magnetospheric electron precipitation. The chemical reaction rates differ in more than ten orders of magnitude, resulting in the high stiffness of the ordinary differential equations system considered, which was solved using the high-performance Gear method. The AIM-E model allowed us to calculate the concentration of the neutrals NO, N(4S), and N(2D), ions + + + + + 4 + 2 + 2 N ,N2 , NO ,O2 ,O ( S), O ( D), and O ( P), and electrons Ne, in the whole auroral zone in the Citation: Nikolaeva, V.; Gordeev, E.; 90-150 km altitude range in real time. -
View Conducted by Its Standing Review Board (SRB)
Science Committee Report Dr. Wes Huntress, Chair 1 Science Committee Members Wes Huntress, Chair Byron Tapley, (Vice Chair) University of Texas-Austin, Chair of Earth Science Alan Boss, Carnegie Institution, Chair of Astrophysics Ron Greeley, Arizona State University, Chair of Planetary Science Gene Levy, Rice University , Chair of Planetary Protection Roy Torbert, University of New Hampshire, Chair of Heliophysics Jack Burns, University of Colorado Noel Hinners, Independent Consultant *Judith Lean, Naval Research Laboratory Michael Turner, University of Chicago Charlie Kennel, Chair of Space Studies Board (ex officio member) * = resigned July 16, 2010 2 Agenda • Science Results • Programmatic Status • Findings & Recommendations 3 Unusual Thermosphere Collapse • Deep drop in Thermospheric (50 – 400 km) density • Deeper than expected from solar cycle & CO2 4 Aeronomy of Ice in the Mesosphere (AIM) unlocking the secrets of Noctilucent Clouds (NLCs) Form 50 miles above surface in polar summer vs ~ 6 miles for “norm79al” clouds. NLCs getting brighter; occurring more often. Why? Linked to global change? AIM NLC Image June 27, 2009 - AIM measured the relationship between cloud properties and temperature - Quantified for the first time, the dramatic response to small changes, 10 deg C, in temperature - T sensitivity critical for study of global change effects on mesosphere Response to Gulf Oil Spill UAVSAR 23 June 2010 MODIS 31 May 2010 ASTER 24 May 2010 Visible Visible/IR false color Satellite instruments: continually monitoring the extent of -
Wide-Field Infrared Survey Explorer Launch Press
PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington -
X-Ray Telescope
Early results of the Hitomi satellite Hiro Matsumoto Ux group & KMI Nagoya Univ.1 Outline •Hitomi instruments •Early scientific results –DM in Perseus –Turbulence in Perseus –others 2 Japanese history of X-ray satellites Launch, Feb. 17, 2016 Weight Suzaku Ginga ASCA Hitomi Tenma Hakucho Rocket 3 International collaboration More than 160 scientists from Japan/USA/Europe 4 Attitude anomaly Loss of communication (Mar. 26, 2016) spinning Gave up recovery (Apr. 28, 2016)5 Hitomi Obs. List Target Date Perseus Cluster of galaxies Feb. 25—27, 2016 Mar. 4—8, 2016 N132D Supernova remnants Mar. 8—11, 2016 IGR J16318-4848 Pulsar wind nebula Mar. 11—15, 2016 RXJ 1856-3754 Neutron star Mar. 17—19, 2016 Mar. 23—25, 2016 G21.5-0.9 Pulsar wind nebula Mar. 19—23, 2016 Crab Pulsar wind nebula Mar. 25, 2016 6 Scienfitic Instruments 7 4 systems Name X-Ray Telescope SXS Soft Micro-calorimeter (E<10keV) SXI Soft CCD (E<10keV) HXI Hard Si/CdTe (E<80keV) SGD --- Si/CdTe (Compton) 8 Wide energy range (0.3—600keV) HXT 1keV∼ 107K SXT SGD SXI HXI SXS 9 SXT + SXS (0.3—12keV) Soft X-ray Telescope Soft X-ray Spectrometer (X-ray micro-calorimeter) f=5.6m 10 Soft X-ray Spectrometer (SXS) FOV: 3′ × 3′ Δ푇 ∝ ℎ휈 6 × 6 pix 11 Energy Resolution Hitomi SXS Suzaku CCD Δ퐸 = 5 푒푉@ 6푘푒푉 (cf. CCD Δ퐸 = 130 푒푉)12 Before Hitomi: gratings Point source Extended Not good for extended objects 13 X-ray microcalorimeter Extended Non-dispersive type. Spatial extension doesn’t matter. -
Probes to the Inferior Planets – a New Dawn for Neo and Ieo Detection Technology Demonstration from Heliocentric Orbits Interior to the Earth’S?
PROBES TO THE INFERIOR PLANETS – A NEW DAWN FOR NEO AND IEO DETECTION TECHNOLOGY DEMONSTRATION FROM HELIOCENTRIC ORBITS INTERIOR TO THE EARTH’S? 2011 IAA Planetary Defense Conference 09-12 May 2011 Bucharest, Romania Jan Thimo Grundmann(1), Stefano Mottola(2), Maximilian Drentschew(6), Martin Drobczyk(1), Ralph Kahle(3), Volker Maiwald(4), Dominik Quantius(4), Paul Zabel(4), Tim van Zoest(5) (1)DLR German Aerospace Center - Institute of Space Systems - Department of Satellite Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected] (2)DLR German Aerospace Center - Institute of Planetary Research - Department Asteroids and Comets Rutherfordstraße 2, 12489 Berlin, Germany Email: [email protected] (3)DLR German Aerospace Center - Space Operations and Astronaut Training - Space Flight Technology Dept. 82234 Oberpfaffenhofen-Wesseling, Germany Email: [email protected] (4)DLR German Aerospace Center - Institute of Space Systems - Dept. System Analysis Space Segments (SARA) Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected], [email protected], [email protected] (5)DLR German Aerospace Center - Institute of Space Systems - Department of Exploration Systems Robert-Hooke-Straße 7, 28359 Bremen, Germany Email: [email protected] (6)ZFT Zentrum für Telematik Allesgrundweg 12, 97218 Gerbrunn, Germany Email: [email protected] ABSTRACT With the launch of MESSENGER and VENUS EXPRESS, a new wave of exploration of the inner solar system has begun. Noting the growing number of probes to the inner solar system, it is proposed to connect the expertise of the respective spacecraft teams and the NEO and IEO survey community to best utilize the extended cruise phases and to provide additional data return in support of pure science as well as planetary defence. -
Concepts & Synthesis
CONCEPTS & SYNTHESIS EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY Ecological Monographs, 81(3), 2011, pp. 349–405 Ó 2011 by the Ecological Society of America Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena 1,3 2 MICHAEL A. HUSTON AND STEVE WOLVERTON 1Department of Biology, Texas State University, San Marcos, Texas 78666 USA 2University of North Texas, Department of Geography, Denton, Texas 76203-5017 USA Abstract. Bergmann’s rule, which proposes a heat-balance explanation for the observed latitudinal gradient of increasing animal body size with increasing latitude, has dominated the study of geographic patterns in animal size since it was first proposed in 1847. Several critical reviews have determined that as many as half of the species examined do not fit the predictions of Bergmann’s rule. We have proposed an alternative hypothesis for geographic variation in body size based on food availability, as regulated by the net primary production (NPP) of plants, specifically NPP during the growing season, or eNPP (ecologically and evolutionarily relevant NPP). Our hypothesis, ‘‘the eNPP rule,’’ is independent of latitude and predicts both spatial and temporal variation in body size, as well as in total population biomass, population growth rates, individual health, and life history traits of animals, including humans, wherever eNPP varies across appropriate scales of space or time. In the context of a revised interpretation of the global patterns of NPP and eNPP, we predict contrasting latitudinal correlations with body size in three distinct latitudinal zones. The eNPP rule explains body- size patterns that are consistent with Bergmann’s rule, as well as two distinct types of contradictions of Bergmann’s rule: the lack of latitudinal patterns within the tropics, and the decline in body size above approximately 608 latitude. -
Progress with Litebird
LiteBIRD Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection Progress with LiteBIRD Masashi Hazumi (KEK/Kavli IPMU/SOKENDAI/ISAS JAXA) for the LiteBIRD working group 1 LiteBIRD JAXA Osaka U. Kavli IPMU Kansei U. Tsukuba APC Paris T. Dotani S. Kuromiya K. Hattori Gakuin U. M. Nagai R. Stompor H. Fuke M. Nakajima N. Katayama S. Matsuura H. Imada S. Takakura Y. Sakurai TIT Cardiff U. I. Kawano K. Takano H. Sugai Kitazato U. S. Matsuoka G. Pisano UC Berkeley / H. Matsuhara T. Kawasaki R. Chendra LBNL T. Matsumura Osaka Pref. U. KEK Paris ILP D. Barron K. Mitsuda M. Inoue M. Hazumi Konan U. U. Tokyo J. Errard J. Borrill T. Nishibori K. Kimura (PI) I. Ohta S. Sekiguchi Y. Chinone K. Nishijo H. Ogawa M. Hasegawa T. Shimizu CU Boulder A. Cukierman A. Noda N. Okada N. Kimura NAOJ S. Shu N. Halverson T. de Haan A. Okamoto K. Kohri A. Dominjon N. Tomita N. Goeckner-wald S. Sakai Okayama U. M. Maki T. Hasebe McGill U. P. Harvey Y. Sato T. Funaki Y. Minami J. Inatani Tohoku U. M. Dobbs C. Hill K. Shinozaki N. Hidehira T. Nagasaki K. Karatsu M. Hattori W. Holzapfel H. Sugita H. Ishino R. Nagata S. Kashima MPA Y. Hori Y. Takei A. Kibayashi H. Nishino T. Noguchi Nagoya U. E. Komatsu O. Jeong S. Utsunomiya Y. Kida S. Oguri Y. Sekimoto K. Ichiki NIST R. Keskitalo T. Wada K. Komatsu T. Okamura M. Sekine T. Kisner G. Hilton R. Yamamoto S. Uozumi N. -
Building the Coolest X-Ray Satellite
National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1 -
AKARI: Astronomical IR Satellite MLHES Mission Program
Probing Ancient Mass Loss with AKARI’s Extended Dust Emission Objects Rachael Tomasino1, Dr. Toshiya Ueta1,2, Dr. Yamamura Issei2, Dr. Hideyuki Izumiura3 1University of Denver, USA; 2Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Japan, 3Okayama Astrophysical Observatory, Japan AKARI: Astronomical IR Satellite FIS-AKARI Slow-scan Tools! Extended Emission Calibration! AKARI (formerly ASTRO-F), is the second Japanese satellite FAST is a program that allows for interactive Original calibration of the FIS detector was done using diffuse galactic cirrus emission dedicated to infrared (IR) astronomy, from the Institute of assessment of the data quality and on-the-fly with low photon counts. On the other hand, bright point sources can cause the slow Space and Astronautical Science (ISAS) of the Japanese corrections to the time-series data on a pixel-by- transient response effect because of high photon counts. Marginally extended sources Aerospace Exploration Agency (JAXA). Its main objective is pixel basis in order to manually correct glitches consist of regions of high and low photon counts, and therefore, only parts of them suffer to perform an all-sky survey with better spatial resolution and that would have been missed in the pipeline from the slow transient response effect. Hence, we needed to devise a specific method to wider wavelength coverage than IRAS (first US, UK, Dutch process. These corrections include: (1) eliminate address the detector response as a whole. This method uses a contour aperture to include infrared satellite launched in 1983), mapping the entire sky in bad on-sky calibration sequences, (2) flag out both the faint and bright emission by setting a threshold of background + 3#.! six infrared bands. -
The Annual Compendium of Commercial Space Transportation: 2012
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.