Building the Coolest X-Ray Satellite

Total Page:16

File Type:pdf, Size:1020Kb

Building the Coolest X-Ray Satellite National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1 – Astro-E2: History, People, and Science Lesson Plan: Focus for Viewing, Viewing Guide, Post-Viewing Activities ................. 5 III.Video Chapter 2 – X-ray Spectroscopy and the Microcalorimeter Lesson Plan: Focus for Viewing, Viewing Guide, Post-Viewing Activities .................. 7 Background: X-ray Spectroscopy and the XRS ............................................................ 9 Activity 1 – Modeling and Using the Electromagnetic Spectrum ............................... 11 IV.Video Chapter 3 – Building the X-ray Spectrometer and the X-ray Telescopes Lesson Plan: Focus for Viewing, Viewing Guide, Post-Viewing Activities ................ 15 Background: Mirror Assembly Terms ....................................................................... 17 Activity 2 – A Human Model for Grazing Incidence Angles ..................................... 20 V. Video Chapter 4 – Overcoming Challenges and Moving On Lesson Plan: Focus for Viewing, Viewing Guide, Post-Viewing Activities ............... 22 Background: How does an ADR Work? ..................................................................... 24 Activity 3 – Dry Ice Inspired Problems....................................................................... 26 VI. Capstone Activity – Putting It All Together ................................................................. 31 VII. Appendix A – Launch Footage Description ................................................................. 43 VIII. Appendix B – Suzaku diagram ................................................................................... 46 IX. Appendix C – Glossary ............................................................................................... 47 X. Frequently Asked Questions ......................................................................................... 54 XI. Student Worksheets (for video chapters) ...................................................................... 59 1 I. Introduction 1. What is Astro-E2 (Suzaku)? Astro-E2 is a Japanese satellite observatory which includes instruments built by NASA and Japan. The satellite is designed to observe the X-ray emission from objects such as black holes, supernova remnants and active galaxies. Two of the instruments were built at NASA’s Goddard Space Flight Center: the X-ray Telescopes (XRT), and the X-ray Spectrometer (XRS). The telescopes utilize grazing optics to focus X-rays, and the spectrometer determines the energy of an X-ray by measuring the temperature rise in a wafer due to an incident X-ray. Astro-E2 is a re- build of the Astro-E mission, which suffered a launch failure in February 2000. Astro-E2 was successfully launched in July 2005, and was at that time renamed Suzaku. (In this guide we use both names.) Additional information about Astro-E2/Suzaku can be found at http://suzaku-epo.gsfc.nasa.gov/. 2. “Building the Coolest X-ray Satellite: Astro-E2” The video, “Building the Coolest X-ray Satellite: Astro-E2” tells the story of the development of the X-ray Telescopes and the X-ray Spectrometer. In addition, it includes profiles of scientists working on the mission, a description of the objects that Astro-E2 studies, and a look at how the instruments were put together. It shows how scientists and engineers overcome setbacks to deliver their instruments to Japan for final assembly and launch of the satellite. It also provides a window to how scientists from different cultures work together. The complete video is approximately 35 minutes long. 3. How to Use This Guide. This guide provides classroom resources for viewing the video. In this guide, the video is divided into four chapters. The lesson for each chapter contains questions for students to focus on while viewing, and “Pause Points” to provide discussion of particular topics and scenes. There are also post-viewing questions for discussion. Each of these lessons takes about 45 minutes. Student worksheets for each chapter are in Section XI of this guide. They can be used by the students as they watch the video, or used as a review immediately after students have finished watching the video. Also included are extensive classroom activities for three of the video chapters, and a capstone activity in which students come to understand what we learn from spectroscopy. The student worksheets, pause point questions, post-viewing questions, and the activities provide a wide variety of techniques for assessing student understanding of the topics. 2 This guide also gives additional information about some of the major components of the mission seen in the video. These include spectroscopy and how the XRS works, how the cooling system for the XRS works using an adiabatic demagnetization refrigerator (ADR), and a description of the different parts of the XRTs. Using this guide will help make the viewing of the video an active learning experience. 4. Contents of the DVD The DVD accompanying this guide presents the video in a number of ways: - “Play Movie” will play the entire video. - “Chapters” divides the movie into four chapters which follow this guide. - “Teacher Resources” gives clips for each of the Pause Points in the guide. - “Watch the Launch” is a four-minute video of the complete launch sequence. For use in the classroom, you might show one chapter per class period, and engage in the “Focus for Viewing” questions. You can follow this by showing the “Pause Point” clips for that chapter, and discussing the related questions. After discussing the Pause Point questions, you may replay the Pause Point clips as needed. 5. Post-Launch Information The video ends with the XRS leaving NASA/Goddard Space Flight Center, and a few scenes from the successful launch of Astro-E2 on July 10, 2005. After launch, Astro-E2 was renamed Suzaku. In this guide, we use both names. After launch, the satellite deployed successfully, and the activation of the scientific instruments was begun. Initial calibration data from the XRS looked very promising and scientists were looking forward to a successful mission. Unfortunately, a few weeks after launch, the XRS cooling system lost its liquid helium, and the XRS became inoperable. The mission continues with the two other instruments on-board, the X- ray Imaging Spectrometer, and the Hard X-ray Detector. The XRTs, which focus X-rays onto these instruments, are working as designed. This loss was a deep disappointment to the scientists and engineers, but they continue to look for opportunities to build the instrument again and to fly it on another satellite. The principles of operation of the XRS remain useful teaching tools, and the video remains a useful lesson in how science is done. You may wish to share this information with the students only after they have viewed the entire video. This may allow for further discussion on the risks of space-based astronomy. 3 6. Pre-requisites The teacher should have some knowledge of basic astronomy and physics concepts. Concepts such as the electromagnetic spectrum, wavelength, temperature, heat, and basic principles of optics should be familiar. A basic understanding of astronomical objects such as black holes, supernovae, and galaxies is also recommended. 7. Standards Met by Video and Activities Below is a summary of the National Science Education Standards and mathematics standards from the National Council of Teachers of Mathematics that are addressed in each of the chapters and activities. Each of these is for the grade 9-12 level. Some material in this guide is also appropriate for upper middle school. Viewing Chapter 1: NSES Std G: Science as a human endeavor Viewing Chapter 2: NSES Std G: Science as a human endeavor Activity 1: NSES Std B: Interaction between matter and energy: waves, EM waves, discreet absorption/emission of light by atoms. Viewing Chapter 3: NSES Std G: Science as a human endeavor Activity 2: NSES Std B: Interactions between matter and energy: waves, EM waves, discreet nature of photons Viewing Chapter 4: NSES Std G: Science as a human endeavor Activity
Recommended publications
  • Annual Report and Financial Statements
    Annual Report and Financial Statements for the year ended 31 December 2018 Dimensional Funds ICVC Authorised by the Financial Conduct Authority No marketing notification has been submitted in Germany for the following Funds of Dimensional Funds ICVC: Global Short-Dated Bond Fund International Core Equity Fund International Value Fund United Kingdom Core Equity Fund United Kingdom Small Companies Fund United Kingdom Value Fund Accordingly, these Funds must not be publicly marketed in Germany. Table of Contents Dimensional Funds ICVC General Information* 2 Investment Objectives and Policies* 3 Authorised Corporate Directors’ Investment Report* 6 Incorporation and Share Capital* 10 The Funds 10 Fund Cross-Holdings 10 Authorised Status* 10 Regulatory Disclosure* 10 Potential Implications of Brexit* 10 Responsibilities of the Authorised Corporate Director 11 Responsibilities of the Depositary 11 Report of the Depositary to the Shareholders 11 Directors' Statement 11 Independent Auditors’ Report to the Shareholders of Dimensional Funds ICVC 12 The Annual Report and Financial Statements for each of the below sub-funds (the “Funds”); Emerging Markets Core Equity Fund Global Short-Dated Bond Fund International Core Equity Fund International Value Fund United Kingdom Core Equity Fund United Kingdom Small Companies Fund United Kingdom Value Fund are set out in the following order: Fund Information 14 Portfolio Statement* 31 Statement of Total Return 149 Statement of Change in Net Assets Attributable to Shareholders 149 Balance Sheet 150 Notes to the Financial Statements 151 Distribution Tables 168 Remuneration Disclosures (unaudited)* 177 Supplemental Information (unaudited) 178 * These collectively comprise the Authorised Corporate Directors’ (“ACD”) Report. Dimensional Fund Advisors Ltd. Annual Report and Financial Statements, 31 December 2018 1 Dimensional Funds ICVC General Information Authorised Corporate Director (the “ACD”): Dimensional Fund Advisors Ltd.
    [Show full text]
  • IVS NICT-TDC News No.39
    ISSN 1882-3432 CONTENTS Proceedings of the 18th NICT TDC Symposium (Kashima, October 1, 2020) KNIFE, Kashima Nobeyama InterFErometer . 3 Makoto Miyoshi Space-Time Measurements Research Inspired by Kashima VLBI Group . 8 Mizuhiko Hosokawa ALMA High Frequency Long Baseline Phase Correction Using Band-to-band ..... 11 (B2B) Phase Referencing Yoshiharu Asaki and Luke T. Maud Development of a 6.5-22.5 GHz Very Wide Band Feed Antenna Using a New ..... 15 Quadruple-Ridged Antenna for the Traditional Radio Telescopes Yutaka Hasegawa*, Yasumasa Yamasaki, Hideo Ogawa, Taiki Kawakami, Yoshi- nori Yonekura, Kimihiro Kimura, Takuya Akahori, Masayuki Ishino, Yuki Kawa- hara Development of Wideband Antenna . 18 Hideki Ujihara Performance Survey of Superconductor Filter Introduced in Wideband Re- ..... 20 ceiver for VGOS of the Ishioka VLBI Station Tomokazu Nakakuki, Haruka Ueshiba, Saho Matsumoto, Yu Takagi, Kyonosuke Hayashi, Toru Yutsudo, Katsuhiro Mori, Tomokazu Kobayashi, and Mamoru Sekido New Calibration Method for a Radiometer Without Using Liquid Nitrogen ..... 23 Cooled Absorber Noriyuki Kawaguchi, Yuichi Chikahiro, Kenichi Harada, and Kensuke Ozeki Comparison of Atmospheric Delay Models (NMF, VMF1, and VMF3) in ..... 27 VLBI analysis Mamoru Sekido and Monia Negusini HINOTORI Status Report . 31 Hiroshi Imai On-the-Fly Interferometer Experiment with the Yamaguchi Interferometer . 34 Kenta Fujisawa, Kotaro Niinuma, Masanori Akimoto, and Hideyuki Kobayashi Superconducting Wide-band BRF for Geodetic VLBI Observation with ..... 36 VGOS Radio Telescope
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Wide-Field Infrared Survey Explorer Launch Press
    PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington
    [Show full text]
  • X-Ray Telescope
    Early results of the Hitomi satellite Hiro Matsumoto Ux group & KMI Nagoya Univ.1 Outline •Hitomi instruments •Early scientific results –DM in Perseus –Turbulence in Perseus –others 2 Japanese history of X-ray satellites Launch, Feb. 17, 2016 Weight Suzaku Ginga ASCA Hitomi Tenma Hakucho Rocket 3 International collaboration More than 160 scientists from Japan/USA/Europe 4 Attitude anomaly Loss of communication (Mar. 26, 2016) spinning Gave up recovery (Apr. 28, 2016)5 Hitomi Obs. List Target Date Perseus Cluster of galaxies Feb. 25—27, 2016 Mar. 4—8, 2016 N132D Supernova remnants Mar. 8—11, 2016 IGR J16318-4848 Pulsar wind nebula Mar. 11—15, 2016 RXJ 1856-3754 Neutron star Mar. 17—19, 2016 Mar. 23—25, 2016 G21.5-0.9 Pulsar wind nebula Mar. 19—23, 2016 Crab Pulsar wind nebula Mar. 25, 2016 6 Scienfitic Instruments 7 4 systems Name X-Ray Telescope SXS Soft Micro-calorimeter (E<10keV) SXI Soft CCD (E<10keV) HXI Hard Si/CdTe (E<80keV) SGD --- Si/CdTe (Compton) 8 Wide energy range (0.3—600keV) HXT 1keV∼ 107K SXT SGD SXI HXI SXS 9 SXT + SXS (0.3—12keV) Soft X-ray Telescope Soft X-ray Spectrometer (X-ray micro-calorimeter) f=5.6m 10 Soft X-ray Spectrometer (SXS) FOV: 3′ × 3′ Δ푇 ∝ ℎ휈 6 × 6 pix 11 Energy Resolution Hitomi SXS Suzaku CCD Δ퐸 = 5 푒푉@ 6푘푒푉 (cf. CCD Δ퐸 = 130 푒푉)12 Before Hitomi: gratings Point source Extended Not good for extended objects 13 X-ray microcalorimeter Extended Non-dispersive type. Spatial extension doesn’t matter.
    [Show full text]
  • In-Flight PSF Calibration of the Nustar Hard X-Ray Optics
    In-flight PSF calibration of the NuSTAR hard X-ray optics Hongjun Ana, Kristin K. Madsenb, Niels J. Westergaardc, Steven E. Boggsd, Finn E. Christensenc, William W. Craigd,e, Charles J. Haileyf, Fiona A. Harrisonb, Daniel K. Sterng, William W. Zhangh aDepartment of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada; bCahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA; cDTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Denmark; dSpace Sciences Laboratory, University of California, Berkeley, CA 94720, USA; eLawrence Livermore National Laboratory, Livermore, CA 94550, USA; fColumbia Astrophysics Laboratory, Columbia University, New York NY 10027, USA; gJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; hGoddard Space Flight Center, Greenbelt, MD 20771, USA ABSTRACT We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is ∼<3% for extraction ′′ apertures of R ∼> 60 with no significant energy dependence.
    [Show full text]
  • Nustar Observatory Guide
    NuSTAR Guest Observer Program NuSTAR Observatory Guide Version 3.2 (June 2016) NuSTAR Science Operations Center, California Institute of Technology, Pasadena, CA NASA Goddard Spaceflight Center, Greenbelt, MD nustar.caltech.edu heasarc.gsfc.nasa.gov/docs/nustar/index.html i Revision History Revision Date Editor Comments D1,2,3 2014-08-01 NuSTAR SOC Initial draft 1.0 2014-08-15 NuSTAR GOF Release for AO-1 Addition of more information about CZT 2.0 2014-10-30 NuSTAR SOC detectors in section 3. 3.0 2015-09-24 NuSTAR SOC Update to section 4 for release of AO-2 Update for NuSTARDAS v1.6.0 release 3.1 2016-05-10 NuSTAR SOC (nusplitsc, Section 5) 3.2 2016-06-15 NuSTAR SOC Adjustment to section 9 ii Table of Contents Revision History ......................................................................................................................................................... ii 1. INTRODUCTION ................................................................................................................................................... 1 1.1 NuSTAR Program Organization ..................................................................................................................................................................................... 1 2. The NuSTAR observatory .................................................................................................................................... 2 2.1 NuSTAR Performance ........................................................................................................................................................................................................
    [Show full text]
  • Orbiting Debris: a Space Environmental Problem (Part 4 Of
    Orbiting Debris: A Since Environmential Problem ● 3 Table 2--of Hazardous Interference by environment. Yet, orbital debris is part of a Orbital Debris larger problem of pollution in space that in- cludes radio-frequency interference and inter- 1. Loss or damage to space assets through collision; ference to scientific observations in all parts of 2. Accidental re-entry of space hardware; the spectrum. For example, emissions at ra- 3. Contamination by nuclear material of manned or unmanned spacecraft, both in space and on Earth; dio frequencies often interfere with radio as- 4. Interference with astronomical observations, both from the tronomy observations. For several years, ground and in space; gamma-ray astronomy data have been cor- 5. Interference with scientific and military experiments in space; rupted by Soviet intelligence satellites that 14 6. Potential military use. are powered by unshielded nuclear reactors. The indirect emissions from these satellites SOURCE: Space Debris, European Space Agency, and Office of Technology As- sessment. spread along the Earth’s magnetic field and are virtually impossible for other satellites to Earth. The largest have attracted worldwide escape. The Japanese Ginga satellite, attention. 10 Although the risk to individuals is launched in 1987 to study gamma-ray extremely small, the probability of striking bursters, has been triggered so often by the populated areas still finite.11 For example: 1) Soviet reactors that over 40 percent of its available observing time has been spent trans- the U.S.S.R. Kosmos 954, which contained a 15 nuclear power source,12 reentered the atmos- mitting unintelligible “data.” All of these phere over northwest Canada in 1978, scatter- problem areas will require attention and posi- ing debris over an area the size of Austria; 2) a tive steps to guarantee access to space by all Japanese ship was hit in 1969 by pieces of countries in the future.
    [Show full text]
  • Solar Flares
    https://ntrs.nasa.gov/search.jsp?R=20150005791 2019-08-31T11:04:12+00:00Z Solar Flares Sabrina Savage (NASA/MSFC) Heliophysics System Observatory (HSO) • Fleet of solar, heliospheric, geospace, and planetary satellites designed to work independently while enabling large-scale collaborative investigations. http://www.nasa.gov/mission_pages/sunearth/missions/ Heliophysics System Observatory (HSO): http://www.nasa.gov/mission_pages/sunearth/missions/ The Sun in Layers Converts 4 million tons of matter into energy every second. Core is as dense as lead. Interplay between magnetic pressure and gas (plasma) pressure. 15 000 000 ∘C “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ The Sun in Layers 15 000 000 ∘C European Space Agency (ESA) Smithsonian Astrophysical Observatory (SAO) “Mysteries of the Sun”: NASA / Jenny Mottar Sun Facts: http://solarscience.msfc.nasa.gov/ Sunspots & Active Regions 1625 May: Christoph Scheiner 2014 April 14: SDO HMI 6173 A European Space Agency (ESA) / Royal Observatory Belgium (ROB) NOAA Active Regions: SolarMonitor.org PROBA2 Science Center (ROB): http://proba2.sidc.be/ Sunspots & Active Regions Formation 4500 A 193 A 131 A SDO / AIA 2014 Apr 13 - 15 JHelioviewer — Explore the Sun: http://jhelioviewer.org/ Sunspots & Active Regions Hinode SOT: NASA / JAXA / NAOJ Sunspot Magnetic fields ~ 3000-6000 times stronger than Earth’s field. Magnetic pressure dominates gas pressure in spot, thus inhibiting convective flow of heat. JHelioviewer SDO / AIA 2014 Apr 04 SOT (CN line 3883 A); 2007 May 2 SOHO animation gallery SOT Picture of the Day (POD): http://sot.lmsal.com/pod?cmd=view-gallery Sunspots & Active Regions Solar Dynamics Observatory (GSFC) Jewel Box: http://svs.gsfc.nasa.gov/vis/a000000/a004100/a004117/ Sunspots & Active Regions Courtesy of Milo Littenberg Sunspots & Active Regions “SDO Jewel Box” Solar features as seen with 10 different filters (i.e., plasma at different temperatures).
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
    MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.
    [Show full text]
  • JAXA's X-Ray Astronomy Mission ASTRO-H: Launch and First
    46th International Conference on Environmental Systems ICES-2016-157 10-14 July 2016, Vienna, Austria JAXA’s X-ray Astronomy Mission ASTRO-H: Launch and First Month’s In-Orbit Thermal Performance Naoko IWATA1 Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 252-5210 Tel: +81-50-3362-3592, Fax: +81-42-759-8068 E-mail: [email protected] Takashi USUI2, Akihiko MIKI3, Mizuho IKEDA4 NEC Corporation and Yoh TAKEI5, Atsushi OKAMOTO6, Hiroyuki OGAWA7, Tadayuki TAKAHASHI8 Japan Aerospace Exploration Agency In this study, the thermal performance evaluation results of JAXA’s X-ray astronomy mission ASTRO-H are presented. ASTRO-H was successfully launched on February 17, 2016 from Tanegashima Space Center using an H2A rocket. ASTRO-H houses four telescopes and six detectors. Each detector has its own radiator and heat pipes for heat dissipation. The most major mission will feature a soft X-ray spectrometer having four loop heat pipes (LHPs) for heat transport from two cryocoolers. Six fans have been mounted close to each cryocooler for ground cooling in the fairing just before the launch. Hard X-ray imagers (HXIs) are mounted on an HXI plate; this plate is expanded by 6.4 m via an extensible optical bench (EOB) in orbit to achieve the necessary focal length. The EOB was successfully expanded 11 days after the launch. Heat pipes appropriately functioned in orbit. The two LHPs for the compressors have been operated properly for more than one month Measured inflight temperatures agree well with predicted ones for an attitude condition. Nomenclature
    [Show full text]