II Publications, Presentations

Total Page:16

File Type:pdf, Size:1020Kb

II Publications, Presentations II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. Quantum Grav., 27, 173001. 1103-1108. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arimatsu, K., Izumiura, H., Ueta, T., Yamamura, I., Onaka, T.: First Search for Gravitational Waves from the Youngest Known 2011, Detection of the Detached Dust Shell of U Antliae at Mid- Neutron Star, ApJ, 722, 1504-1513. infrared Wavelengths with AKARI/IRC, ApJ, 729, L19. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arimoto, M., et al. including Shirasaki, Y.: 2010, Spectral-Lag Calibration of the LIGO gravitational wave detectors in the Relations in GRB Pulses Detected with HETE-2, PASJ, 62, 487. fifth science run, Nucl. Instrum. Methods. Phys. Res. A, 624, Asaki, Y., Deguchi, S., Imai, H., Hachisuka, K., Miyoshi, M., 223-240. Honma, M.: 2010, Distance and Proper Motion Measurement Abadie, J., et al. including Hayama, K., Kawamura, S.: 2011, of the Red Supergiant, S Persei, with VLBI H2O Maser Search for gravitational waves associated with the August 2006 Astrometry, ApJ, 721, 267-277. timing glitch of the Vela pulsar, Phys. Rev. D, 83, 042001. Baba, J., Saitoh, T. R., Wada, K.: 2010, On the Interpretation of Abbott, B. P., et al. including Hayama, K., Kawamura, S.: 2010, the l-v Features in the Milky Way Galaxy, PASJ, 62, 1413-1422. Searches for Gravitational Waves from Known Pulsars with Barro, G, Perez-Gonalez, P. G., Ashby, M. L. N, Kajisawa, M., Science Run 5 LIGO Data, ApJ, 713, 671-685. Miyazaki, S., Villar, V., Yamada, T.: 2011, UV-to-FIR Analysis Abbott, B. P., et al. including Hayama, K., Kawamura, S.: 2010, of Spitzer/IRAC Sources in the Extended Groth Strip. I. Multi- Search For Gravitational-wave Bursts Associated with Gamma- wavelength Photometry and Spectral Energy Distributions, ray Bursts using Data from LIGO Science Run 5 and Virgo ApJS, 193, 13. Science Run 1, ApJ, 715, 1438-1452. Bayliss, M. B., Gladders, M. D., Oguri, M., Hennawi, J. F., Sharon, Agatsuma, K., Arai, K., Fujimoto, M.-K., Kawamura, S., Kuroda, K., Koester, B. P., Dahle, H.: 2011, The Redshift Distribution of K., Miyakawa, O., Miyoki, S., Ohashi, M., Suzuki, T., Takahashi, Giant Arcs in the Sloan Giant Arcs Survey, ApJ, 727, L26. R., Tatsumi, D., Telada, S., Uchiyama, T., Yamamoto, K., Bayliss, M. B., Hennawi, J. F., Gladders, M. D., Koester, B. P., CLIO collaborators: 2010, Thermal-noise-limited underground Sharon, K., Dahle, H., Oguri, M.: 2011, Gemini/GMOS interferometer CLIO, Class. Quantum Grav., 27, 084022. Spectroscopy of 26 Strong-lensing-selected Galaxy Cluster Amanullah, R., et al. including Furusawa, H., Kashikawa, N., The Cores, ApJS, 193, 8. Supernova Cosmology Project: 2010, Spectra and Hubble Space Bedding, T. R., et al. including Kambe, E., Izumiura, H.: 2010, Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z Multi-Site Campaign to Measure Solar-Like Oscillations in < 1.12 and the Union2 Compilation, ApJ, 716, 712-738. Procyon. II. Mode Frequencies, ApJ, 713, 935-949. Ando, H., Tsuboi, Y., Kambe, E., Sato, B.: 2010, Oscillations in Bekki, K., Tsujimoto, T.: 2010, Origin of the Unusually Low the G-type Giants, PASJ, 62, 1117-1126. Nitrogen Abundances in Young populations of the Large Ando, K., Nagayama, T., Omodaka, T., Handa, T., Imai, H., Magellanic Cloud, ApJ, 721, 1515-1522. Nakagawa, A., Nakanishi, H., Honma, M., Kobayashi, H., Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, Miyaji, T.: 2011, Astrometry of Galactic Star-Forming Region A., Lites, B. W., Okamoto, T. J., Ichimoto, K., Katsukawa, ON2N with VERA: Estimation of the Galactic Constants, PASJ, Y., Magara, T., Suematsu, Y., Shimizu, T.: 2010, Quiescent 63, 45-51. Prominence Dynamics Observed with the Hinode Solar Optical Ando, M., et al. including Kawamura, S., Agatsuma, K., Ejiri, Telescope. I. Turbulent Upflow Plumes, ApJ, 716, 1288-1307. Y., Fujimoto, M., Fukushima, M., Hayama, K., Ishizaki, H., Bernat, D., et al. including Martinache, F.: 2010, A Close 068 II Publications, Presentations Companion Search Around L Dwarfs Using Aperture Masking M., Shimasaku, K., Tanaka, I., Yoshikawa, T., Kashikawa, Interferometry and Palomar Laser Guide Star Adaptive Optics, N., Iye, M., Ichikawa, T.: 2011, Cryogenic Volume-Phase ApJ, 715, 724-735. Holographic Grisms for MOIRCS, PASJ, 63, S605-S612. Boyd, R. N., Kajino, T., Onaka, T.: 2010, Supernovae and the Escapa, A., Fukushima, T.: 2011, Free Translational Oscillations Chirality of the Amino Acids, Astrobiology, 10, 561-568. of Icy Bodies with a Subsurface Ocean using a Variational Burningham, B., Leggett, S. K., Lucas, P. W., Pinfield, D. J., Smart, Approach, AJ, 141, 77-101. R. L., Day-Jones, A. C., Jones, H. R. A., Murray, D., Nickson, Espada, D., Peck, A. B., Matsushita, S., Sakamoto, K., Henkel, E., Tamura, M., Zhang, Z., Lodieu, N., Tinney, C. G., Zapatero C., Iono, D., Israel, F. P., Muller, S., Petitpas, G., Pihlstrom, Osorio, M. R.: 2010, The discovery of a very cool binary Y., Taylor, G. B., Trung, D. V.: 2010, Disentangling the system, MNRAS, 404, 1952-1961. Circumnuclear Environs of Centaurus A: II. On the Nature of Burningham, B., et al. including Tamura, M., Ishii, M., Kuzuhara, the Broad Absorption Line, ApJ, 720, 666-678. M.: 2010, 47 new T dwarfs from the UKIDSS Large Area Survey, Finoguenov, A., et al. including Sekiguchi, K.: 2010, X-ray groups MNRAS, 406, 1885-1906. and clusters of galaxies in the Subaru-XMM Deep Field, Bussey, D. B., McGovern, J. A., Spudis, P. D., Neish, C. D., MNRAS, 403, 2063-2076. Noda, H., Ishihara, Y., Sorensen, S.-A.: 2010, Illumination Fish, V. L., et al. including Honma, M., Oyama, T.: 2011, 1.3 mm conditions of the south pole of the Moon derived using Kaguya Wavelength VLBI of Sagittarius A*: Detection of Time-variable topography, Icarus, 208, 558-564. Emission on Event Horizon Scales, ApJ, 727, L36. Caselli, P., Keto, E., Pagani, L., Aikawa, Y.: 2010, Water vapor Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., toward starless cores: The Herschel view, A&A, 521, 29-33. Fotopoulos, G., Noda, H., Goossens, S., Huang, Q., Ishihara, Cheoun, M. K., Ha, E., Kajino, T.: 2011, Neutrino reactions on Y., Matsumoto, K., Oberst, J., Sasaki, S.: 2011, Accuracy Ar40 for solar and core-collapsing supernova neutrinos, Phys. assessment of lunar topography models, Earth, Planets and Rev. C, 83, 28801. Space, 63, 15-23. Cheoun, M. K., Ha, E., Kim, K. S., Kajino, T.: 2010, Neutrino Fomalont, E., Johnston, K., Fey, A., Boboltz, D., Oyama, T., reactions via neutral and charged current by quasi-particle Honma, M.: 2011, The Position/Structure Stability of Four random phase approximation (QRPA), J. Phys. G, 37, 55101. ICRF2 Sources, AJ, 141, 91. Cheoun, M. K., Ha, E., Lee, S. Y., Kim, K. S., So, W. Y., Kajino, T.: Fontani, F., Cesaroni, R., Furuya, R. S.: 2010, Class I and Class II 2010, Neutrino reactions on 12C by the quasiparticle random- methanol masers in high-mass star-forming regions, A&A, 517, phase approximation, Phys. Rev. C, 81, 28501. A56. Cheoun, M. K., Hayakawa, T., Kajino, T., Chiba, S.: 2010, Fujii, M., Iwasawa, M., Funato, Y., Makino, J.: 2010, The Origin Neutrino reactions on La138 and Ta180 via charged and neutral of S-stars and a Young Stellar Disk: Distribution of Debris Stars currents by the quasiparticle random phase approximation, of a Sinking Star Cluster, ApJ, 716, L80-L84. Phys. Rev. C, 82, 35504. Fujiwara, H., Onaka, T., Ishihara, D., Yamashita, T., Fukagawa, M., Currie, T., et al. including Pyo, T.-S.: 2011, A Combined Nakagawa, T., Kataza, H., Ootsubo, T., Murakami, H.: 2010, Subaru/VLT/MMT 1–5 μm Study of Planets Orbiting HR Enstatite-rich Warm Debris Dust Around HD165014, ApJ, 714, 8799: Implications for Atmospheric Properties, Masses, and L152-L156. Formation, ApJ, 729, 128-147. Fukagawa, M., Tamura, M., Itoh, Y., Oasa, Y., Kudo, T., Hayashi, Dawson, J. R., McClure-Griffiths, N. M., Kawamura, A., Mizuno, S. S., Kato, E., Ootsubo, T., Itoh, Y., Shibai, H., Hayashi, M.: N., Onishi, T., Mizuno, A., Fukui, Y.: 2011, Supershells as 2010, Subaru Near-Infrared Imaging of Herbig Ae Stars, PASJ, Molecular Cloud Factories: Parsec Resolution Observations of 62, 347-370.
Recommended publications
  • Neutron Stars
    Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Optical Observations of Pulsars: the ESO Contribution R.P
    Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed.
    [Show full text]
  • Variable Star Section Circular
    British Astronomical Association Variable Star Section Circular No 82, December 1994 CONTENTS A New Director 1 Credit for Observations 1 Submission of 1994 Observations 1 Chart Problems 1 Recent Novae Named 1 Z Ursae Minoris - A New R CrB Star? 2 The February 1995 Eclipse of 0¼ Geminorum 2 Computerisation News - Dave McAdam 3 'Stella Haitland, or Love and the Stars' - Philip Hurst 4 The 1994 Outburst of UZ Bootis - Gary Poyner 5 Observations of Betelgeuse by the SPA-VSS - Tony Markham 6 The AAVSO and the Contribution of Amateurs to VS Research Suspected Variables - Colin Henshaw 8 From the Literature 9 Eclipsing Binary Predictions 11 Summaries of IBVS's Nos 4040 to 4092 14 The BAA Instruments and Imaging Section Newsletter 16 Light-curves (TZ Per, R CrB, SV Sge, SU Tau, AC Her) - Dave McAdam 17 ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG Section Officers Director Tristram Brelstaff, 3 Malvern Court, Addington Road, READING, Berks, RG1 5PL Tel: 0734-268981 Section Melvyn D Taylor, 17 Cross Lane, WAKEFIELD, Secretary West Yorks, WF2 8DA Tel: 0924-374651 Chart John Toone, Hillside View, 17 Ashdale Road, Cressage, Secretary SHREWSBURY, SY5 6DT Tel: 0952-510794 Computer Dave McAdam, 33 Wrekin View, Madeley, TELFORD, Secretary Shropshire, TF7 5HZ Tel: 0952-432048 E-mail: COMPUSERV 73671,3205 Nova/Supernova Guy M Hurst, 16 Westminster Close, Kempshott Rise, Secretary BASINGSTOKE, Hants, RG22 4PP Tel & Fax: 0256-471074 E-mail: [email protected] [email protected] Pro-Am Liaison Roger D Pickard, 28 Appletons, HADLOW, Kent TN11 0DT Committee Tel: 0732-850663 Secretary E-mail: [email protected] KENVAD::RDP Eclipsing Binary See Director Secretary Circulars Editor See Director Telephone Alert Numbers Nova and First phone Nova/Supernova Secretary.
    [Show full text]
  • AKARI: Astronomical IR Satellite MLHES Mission Program
    Probing Ancient Mass Loss with AKARI’s Extended Dust Emission Objects Rachael Tomasino1, Dr. Toshiya Ueta1,2, Dr. Yamamura Issei2, Dr. Hideyuki Izumiura3 1University of Denver, USA; 2Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Japan, 3Okayama Astrophysical Observatory, Japan AKARI: Astronomical IR Satellite FIS-AKARI Slow-scan Tools! Extended Emission Calibration! AKARI (formerly ASTRO-F), is the second Japanese satellite FAST is a program that allows for interactive Original calibration of the FIS detector was done using diffuse galactic cirrus emission dedicated to infrared (IR) astronomy, from the Institute of assessment of the data quality and on-the-fly with low photon counts. On the other hand, bright point sources can cause the slow Space and Astronautical Science (ISAS) of the Japanese corrections to the time-series data on a pixel-by- transient response effect because of high photon counts. Marginally extended sources Aerospace Exploration Agency (JAXA). Its main objective is pixel basis in order to manually correct glitches consist of regions of high and low photon counts, and therefore, only parts of them suffer to perform an all-sky survey with better spatial resolution and that would have been missed in the pipeline from the slow transient response effect. Hence, we needed to devise a specific method to wider wavelength coverage than IRAS (first US, UK, Dutch process. These corrections include: (1) eliminate address the detector response as a whole. This method uses a contour aperture to include infrared satellite launched in 1983), mapping the entire sky in bad on-sky calibration sequences, (2) flag out both the faint and bright emission by setting a threshold of background + 3#.! six infrared bands.
    [Show full text]
  • ASTRO-F Observer's Manual
    ASTRO-F Observer’s Manual Version 3.2 — for Open Time Observation Planning — ASTRO-F User Support Team in Institute of Space and Astronautical Science / JAXA contact: iris [email protected] European Space Astronomy Centre / ESA contact: http://astro-f.esac.esa.int/esupport/ November 29, 2005 Version 3.2 (November 29, 2005) i Revision Record 2005 Nov. 29: Version 3.2 released. Updated description of IRC FoV and slit (Section 5.1.4 and 5.1.5). Updated IRC04 detection and saturation limits. Also improve the description (Section 5.5.9). Section 5.4.2 revised to clarify the point. Units for Ho given value in p.113. 2005 Nov. 8: Version 3.1 released. Updated Visibility Map for Open Time Users (Figure 3.4.3) Information for the handling of Solar System Object observations (Section 3.4) Updated saturation limits for FTS (FIS03) mode (Table 4.4.16) IRC04 detection limits for NG+Np added (Table 5.5.25,5.5.26) Updated worked examples using the latest versions of the Tools (Section B) ESAC web pages URL and Helpdesk contact address updated Numerous errors and typos corrected 2005 Sep.20: Version 3.0 released. Contents 1 Introduction 1 1.1Purposeofthisdocument............................... 1 1.2RelevantInformation.................................. 3 2 Mission Overview 5 2.1TheASTRO-FMission................................ 5 2.2 Satellite . ........................................ 6 2.2.1 TheBusModule................................ 6 2.2.2 AttitudeDeterminationandControlSystem................. 7 2.2.3 Cryogenics................................... 8 2.3Telescope........................................ 9 2.3.1 Specification.................................. 9 2.3.2 Pre-flightperformance............................. 10 2.4Focal-PlaneInstruments................................ 11 2.4.1 SpecificationOverview............................. 11 2.4.2 Focal-PlaneLayout..............................
    [Show full text]
  • Arxiv:2103.07476V1 [Astro-Ph.GA] 12 Mar 2021
    FERMILAB-PUB-21-075-AE-LDRD Draft version September 3, 2021 Typeset using LATEX twocolumn style in AASTeX63 The DECam Local Volume Exploration Survey: Overview and First Data Release A. Drlica-Wagner ,1, 2, 3 J. L. Carlin ,4 D. L. Nidever ,5, 6 P. S. Ferguson ,7, 8 N. Kuropatkin ,1 M. Adamow´ ,9, 10 W. Cerny ,2, 3 Y. Choi ,11 J. H. Esteves,12 C. E. Mart´ınez-Vazquez´ ,13 S. Mau ,14, 15 A. E. Miller,16, 17 B. Mutlu-Pakdil ,2, 3 E. H. Neilsen ,1 K. A. G. Olsen ,6 A. B. Pace ,18 A. H. Riley ,7, 8 J. D. Sakowska ,19 D. J. Sand ,20 L. Santana-Silva ,21 E. J. Tollerud ,11 D. L. Tucker ,1 A. K. Vivas ,13 E. Zaborowski,2 A. Zenteno ,13 T. M. C. Abbott ,13 S. Allam ,1 K. Bechtol ,22, 23 C. P. M. Bell ,16 E. F. Bell ,24 P. Bilaji,2, 3 C. R. Bom ,25 J. A. Carballo-Bello ,26 D. Crnojevic´ ,27 M.-R. L. Cioni ,16 A. Diaz-Ocampo,28 T. J. L. de Boer ,29 D. Erkal ,19 R. A. Gruendl ,30, 31 D. Hernandez-Lang,32, 13, 33 A. K. Hughes,20 D. J. James ,34 L. C. Johnson ,35 T. S. Li ,36, 37, 38 Y.-Y. Mao ,39, 38 D. Mart´ınez-Delgado ,40 P. Massana,19, 41 M. McNanna ,22 R. Morgan ,22 E. O. Nadler ,14, 15 N. E. D. Noel¨ ,19 A. Palmese ,1, 2 A. H. G. Peter ,42 E. S.
    [Show full text]
  • Structural Analysis of the Sextans Dwarf Spheroidal Galaxy
    MNRAS 000,1{16 (2015) Preprint 9 October 2018 Compiled using MNRAS LATEX style file v3.0 Structural analysis of the Sextans dwarf spheroidal galaxy T. A. Roderick,1? H. Jerjen,1 G. S. Da Costa,1 A. D. Mackey1 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present wide-field g and i band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco tele- scope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 820 (2 kpc) from its centre. We perform a sta- tistical analysis of the over-densities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99:7% confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the over-densities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King 0 0 model to the radial distribution of Sextans stars yields a tidal radius rt = 83:2 ± 7:1 (2.08±0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • Radio Astronom1y G
    £t,: ,/ NATIONAL RADIO ASTRONOMY OBSERVATORY QUARTERLY REPORT October 1 - December 31, 1989 RADIO ASTRONOM1Y G.. '8 tO- C~oe'' n,'evI! I E. Vi. t-Li 1 2 1990 TABLE OF CONTENTS A. TELESCOPE USAGE ... .... ...... ............ 1 B. 140-FOOT OBSERVING PROGRAMS . .... .......... ... 1 C. 12-METER TELESCOPE ....... ..... ., .... ........ 5 D. VERY LARGE ARRAY ....... 1...................8 E. SCIENTIFIC HIGHLIGHTS .... ........ 19 F. PUBLICATIONS ............. G. CENTRAL DEVELOPMENT LABORATORY ........ 20 H. GREEN BANK ELECTRONICS . .. .a.. ...... 21 I. 12-METER ELECTRONICS ...... .. 0. I. 22 J. VLA ELECTRONICS ...... 0..... ..... .... a. 24 K. AIPS .... .............. ...... ............. 26 L. VLA COMPUTER ............. .. .0. .0. ... 27 M. VERY LONG BASELINE ARRAY . .. .0 .0 .0 .0 .0 . .0 .. 27 N. PERSONNEL .. ...... .... .0.0 . .0. .0. .. e. 30 APPENDIX A: List of NRAO Preprints A. TELESCOPE USAGE The NRAO telescopes have been scheduled for research and maintenance in the following manner during the fourth quarter of 1989. 140-ft 12-m VLA Scheduled observing (hrs) 1901.75 1583.50 1565.2 Scheduled maintenance and equipment changes 132.00 107.75 259.8 Scheduled tests and calibrations 20.75 425.75 327.1 Time lost 139.25 208.25 107.0 Actual observing 1762.50 1375.25 1458.2 B. 140-FOOT OBSERVING PROGRAMS The following line programs were conducted during this quarter. No. Observer(s) Program A-95 Avery, L (Herzberg) Observations at 18.2, 18.6, and Bell, M. (Herzberg) 23.7 GHz of cyanopolyynes in carbon Feldman, P. (Herzberg) stars part II. MacLeod, J. (Herzberg) Matthews, H. (Herzberg) B-493 Bania, T. (Boston) Measurements at 8.666 GHz of 3He + Rood, R. (Virginia) emission in HII regions and planetary Wilson, T.
    [Show full text]
  • Dust and Molecular Shells in Asymptotic Giant Branch Stars⋆⋆⋆⋆⋆⋆
    A&A 545, A56 (2012) Astronomy DOI: 10.1051/0004-6361/201118150 & c ESO 2012 Astrophysics Dust and molecular shells in asymptotic giant branch stars,, Mid-infrared interferometric observations of R Aquilae, R Aquarii, R Hydrae, W Hydrae, and V Hydrae R. Zhao-Geisler1,2,†, A. Quirrenbach1, R. Köhler1,3, and B. Lopez4 1 Zentrum für Astronomie der Universität Heidelberg (ZAH), Landessternwarte, Königstuhl 12, 69120 Heidelberg, Germany e-mail: [email protected] 2 National Taiwan Normal University, Department of Earth Sciences, 88 Sec. 4, Ting-Chou Rd, Wenshan District, Taipei, 11677 Taiwan, ROC 3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69120 Heidelberg, Germany 4 Laboratoire J.-L. Lagrange, Université de Nice Sophia-Antipolis et Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France Received 26 September 2011 / Accepted 21 June 2012 ABSTRACT Context. Asymptotic giant branch (AGB) stars are one of the largest distributors of dust into the interstellar medium. However, the wind formation mechanism and dust condensation sequence leading to the observed high mass-loss rates have not yet been constrained well observationally, in particular for oxygen-rich AGB stars. Aims. The immediate objective in this work is to identify molecules and dust species which are present in the layers above the photosphere, and which have emission and absorption features in the mid-infrared (IR), causing the diameter to vary across the N-band, and are potentially relevant for the wind formation. Methods. Mid-IR (8–13 μm) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon- rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]