The AKARI FU-HYU Galaxy Evolution Program: First Results from The

Total Page:16

File Type:pdf, Size:1020Kb

The AKARI FU-HYU Galaxy Evolution Program: First Results from The A&A 514, A9 (2010) Astronomy DOI: 10.1051/0004-6361/200913383 & c ESO 2010 Astrophysics Science with AKARI Special feature The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field C. P. Pearson1,2,3, S. Serjeant3, M. Negrello3,T.Takagi4, W.-S. Jeong5, H. Matsuhara4,T.Wada4,S.Oyabu4, H. M. Lee6,andM.S.Im6 1 Space Science and Technology Department, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK e-mail: [email protected] 2 Department of Physics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1J 1B1, Canada 3 Astrophysics Group, Department of Physics, The Open University, Milton Keynes MK7 6AA, UK 4 Institute of Space and Astronautical Science, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229 8510, Japan 5 KASI, 61-1, Whaam-dong, Yuseong-gu, Deajeon 305-348, South Korea 6 Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742, Korea Received 30 September 2009 / Accepted 9 February 2010 ABSTRACT The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 mi- cron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2−1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community. Key words. methods: observational – catalogs – surveys – galaxies: evolution – infrared: galaxies 1. Introduction GOODS survey (300 square arcmins over 2 fields, Giavalisco et al. 2004), the other GTO fields and the Spitzer first look survey Studies with the Infrared Space Observatory (ISO) of the Hubble (FLS, e.g. Frayer et al. 2006)aswellashavingcoverageoverthe deep fields, north and south (HDF-N, HDF-S) have revealed star 3.5−160 μm wavelength range also include a wealth of ancillary formation rates at least comparable to or higher than those of the data at other wavelengths from radio to X-rays. However, Spitzer / optical UV studies (Mann et al. 2002). At submillimetre wave- has limited imaging capability between 8 μm <λ<24 μmand lengths, surveys in the same HDF-N field with SCUBA on the μ −2 no spectroscopic capability shortward of 5 m leaving a conspic- JCMT has revealed a large (>3000 deg at S 850 > 2 mJy) popu- uous gap in these ranges in both wavelength and redshift. lation of strongly evolving sources with bolometric luminosities 12 −1 >10 L and star formation rates of ∼300−1000 M yr with a The AKARI satellite, (formerly known as ASTRO-F, median redshift of 2.4 (Chapman et al. 2005). The overwhelming Murakami et al. 2007) is the first Japanese space mission ded- conclusion is that the star formation rate at z ∼ 1−2 requires sig- icated to infrared astrophysics and was launched on board nificant evolution in the IR galaxy population from the current JAXA’s M-V Launch Vehicle No. 8 (M-V-8) at 6:28 a.m. on epoch. Deep observations with the Spitzer space telescope have February 22, 2006 Japan Standard Time, JST (February 21st, confirmed this strong evolution in the galaxy population out to 9.28 p.m. UT) from the Uchinoura space center (USC) on the the intermediate redshift range probed by ISO (z ∼ 0.3−1) and southern tip of Japan. The satellite is in a Sun-synchronous polar furthermore provided insight into the higher redshift Universe orbit at an altitude of 700 km and a period of 100 min. AKARI in the so called redshift desert z ∼ 1−3. To connect the lo- has a 68.5 cm cooled telescope with two focal plane instru- cal and intermediate redshift Universe to the higher and high z ments, namely the far-infrared surveyor (FIS) and the infrared Universe observed by Spitzer and SCUBA, comprehensive mul- camera (IRC). The FIS has two 2-dimensional detector arrays tiwavelength imaging and spectroscopy is required throughout and observes in four far-infrared bands between 50 and 180 μm the extragalactic population. The fields surveyed by the Spitzer (Kawada et al. 2007). The IRC consists of three cameras cover- space telescope are some of the most richest fields in multi- ing 1.7−26 μm in 9 bands (see Table 1) with fields of view of wavelength data in the entire sky. The SWIRE wide area sur- approximately 10 × 10 (Onaka et al. 2007). Both instruments vey (50 square degrees over 6 fields, Lonsdale et al. 2004), the have low- to moderate-resolution spectroscopic capability. Article published by EDP Sciences Page 1 of 18 A&A 514, A9 (2010) Table 1. Photometric filter band definitions for the three cameras of the IRC. ∗ Camera Array Area Pixel scale Band λref Δλ (pixels) (arcsec) (μm) (μm) NIR 319 × 412 1.46 × 1.46 N2 2.4 1.9–2.8 #" N3 3.2 2.7–3.8 N4 4.1 3.6–5.3 MIR-S 233 × 256 2.34 × 2.34 S7 7.0 5.9–8.4 #!!% S9W 9.0 6.7–11.6 S11 11.0 8.5–13.1 MIR-L 246 × 239 2.51 × 2.39 L15 15.0 12.6–19.4 L18W 18.0 13.9–25.6 L24 24.0 20.3–26.5 Notes. (∗) This is the effective imaging area of the array. The AKARI mission is primarily a survey mission with an all-sky survey in the far-infrared and large mid-infrared legacy $#! " survey programs being carried out in the region of the North Ecliptic Pole (Matsuhara et al. 2006) and the Large Magellanic Fig. 1. The comprehensive coverage of the AKARI and Spitzer bands Cloud. However in addition to these large surveys (LS), a cam- in the FU-HYU fields. The combination of the AKARI and Spitzer paign of guaranteed time observations, referred to as mission bands completely cover the features in the mid-infrared spectra of star- programs (MP) was also undertaken. forming galaxies (STFG, shown in the figure at three different redshifts) ∼ We report the initial results from the AKARI-FU-HYU mis- locally, out to redshifts of 2. sion program (Follow-Up Hayai-Yasui-Umai). The FU-HYU MP strategically targeted well-studied fields to maximise the opportunities whilst fields near the ecliptic may only be visi- legacy value of the AKARI data and in particular to target Spitzer ble on a few orbits every six months. Taking as an example the fields in the above mentioned conspicuous wavelength “gap”, at two well known fields of ISO-ELAIS N1 (Oliver et al. 2000) wavelengths of 11, 15 and 18 μm. The FU-HYU observations fill at an ecliptic latitude of β ∼ 73◦ and the UKIDSS-UDS field in vital gaps in the wavelength coverage (see Fig. 1) and provide (Lawrence et al. 2007)atβ ∼−17◦, we find that the former invaluable insight into the connection between ISO and Spitzer is observable of 17 orbits during half a year whilst the latter is populations and linking the far-infrared Universe to the high red- observable only 5 times. Given that not every AKARI orbit is shift sub-mm Universe as observed by the SCUBA instrument on available for observation (calibration, directors time, etc.) and the James Clerk Maxell Telescope. further constraints placed on the observations by the necessity The FU-HYU program imaged three major fields of choice of the deep imaging AOT (see below), there exist very (GOODS-N, Lockman Hole, ELAIS-N1, see Sect. 2)and clear criteria for our choice of target fields. in this work we report on the initial data reduction and results For the FU-HYU program we selected three contemporary from the GOODS-N observations. Observation in the Lockman data rich fields; Hole will be reported by Serjeantetal.(2010). Unfortunately, the FU-HYU observations in the GOODS-N – the GOODS North field (GOODS-N); field were not dithered during the observation operation result- – the ELAIS-N1 field; ing in many hot and bad pixels leaving holes in the final co- – the Lockman Hole. added images. Moreover the distortion correction in the standard The ELAIS-N1 field (RA = 16h09m20s; Dec =+54◦5700, IRC pipeline toolkit blurs the hot pixels compounding the prob- J2000, β = 73◦) is one of the the most richest fields in mul- lem. In Sect. 3 we describe in detail our extensive additional pro- tiwavelength data on the entire sky. The ELAIS-N1 field was cessing utilizing intrinsic jitter in the spacecraft observations as ff selected as part of the extragalactic large area ISO survey an e ective dithering and interrupting the standard IRC pipeline (ELAIS, Oliver et al.
Recommended publications
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • AKARI: Astronomical IR Satellite MLHES Mission Program
    Probing Ancient Mass Loss with AKARI’s Extended Dust Emission Objects Rachael Tomasino1, Dr. Toshiya Ueta1,2, Dr. Yamamura Issei2, Dr. Hideyuki Izumiura3 1University of Denver, USA; 2Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Japan, 3Okayama Astrophysical Observatory, Japan AKARI: Astronomical IR Satellite FIS-AKARI Slow-scan Tools! Extended Emission Calibration! AKARI (formerly ASTRO-F), is the second Japanese satellite FAST is a program that allows for interactive Original calibration of the FIS detector was done using diffuse galactic cirrus emission dedicated to infrared (IR) astronomy, from the Institute of assessment of the data quality and on-the-fly with low photon counts. On the other hand, bright point sources can cause the slow Space and Astronautical Science (ISAS) of the Japanese corrections to the time-series data on a pixel-by- transient response effect because of high photon counts. Marginally extended sources Aerospace Exploration Agency (JAXA). Its main objective is pixel basis in order to manually correct glitches consist of regions of high and low photon counts, and therefore, only parts of them suffer to perform an all-sky survey with better spatial resolution and that would have been missed in the pipeline from the slow transient response effect. Hence, we needed to devise a specific method to wider wavelength coverage than IRAS (first US, UK, Dutch process. These corrections include: (1) eliminate address the detector response as a whole. This method uses a contour aperture to include infrared satellite launched in 1983), mapping the entire sky in bad on-sky calibration sequences, (2) flag out both the faint and bright emission by setting a threshold of background + 3#.! six infrared bands.
    [Show full text]
  • ASTRO-F Observer's Manual
    ASTRO-F Observer’s Manual Version 3.2 — for Open Time Observation Planning — ASTRO-F User Support Team in Institute of Space and Astronautical Science / JAXA contact: iris [email protected] European Space Astronomy Centre / ESA contact: http://astro-f.esac.esa.int/esupport/ November 29, 2005 Version 3.2 (November 29, 2005) i Revision Record 2005 Nov. 29: Version 3.2 released. Updated description of IRC FoV and slit (Section 5.1.4 and 5.1.5). Updated IRC04 detection and saturation limits. Also improve the description (Section 5.5.9). Section 5.4.2 revised to clarify the point. Units for Ho given value in p.113. 2005 Nov. 8: Version 3.1 released. Updated Visibility Map for Open Time Users (Figure 3.4.3) Information for the handling of Solar System Object observations (Section 3.4) Updated saturation limits for FTS (FIS03) mode (Table 4.4.16) IRC04 detection limits for NG+Np added (Table 5.5.25,5.5.26) Updated worked examples using the latest versions of the Tools (Section B) ESAC web pages URL and Helpdesk contact address updated Numerous errors and typos corrected 2005 Sep.20: Version 3.0 released. Contents 1 Introduction 1 1.1Purposeofthisdocument............................... 1 1.2RelevantInformation.................................. 3 2 Mission Overview 5 2.1TheASTRO-FMission................................ 5 2.2 Satellite . ........................................ 6 2.2.1 TheBusModule................................ 6 2.2.2 AttitudeDeterminationandControlSystem................. 7 2.2.3 Cryogenics................................... 8 2.3Telescope........................................ 9 2.3.1 Specification.................................. 9 2.3.2 Pre-flightperformance............................. 10 2.4Focal-PlaneInstruments................................ 11 2.4.1 SpecificationOverview............................. 11 2.4.2 Focal-PlaneLayout..............................
    [Show full text]
  • Special Spitzer Telescope Edition No
    INFRARED SCIENCE INTEREST GROUP Special Spitzer Telescope Edition No. 4 | August 2020 Contents From the IR SIG Leadership Council In the time since our last newsletter in January, the world has changed. 1 From the SIG Leadership Travel restrictions and quarantine have necessitated online-conferences, web-based meetings, and working from home. Upturned semesters, constantly shifting deadlines and schedules, and the evolving challenge of Science Highlights keeping our families and communities safe have all taken their toll. We hope this newsletter offers a moment of respite and a reminder that our community 2 Mysteries of Exoplanet continues its work even in the face of great uncertainty and upheaval. Atmospheres In January we said goodbye to the Spitzer Space Telescope, which 4 Relevance of Spitzer in the completed its mission after sixteen years in space. In celebration of Spitzer, Era of Roman, Euclid, and in recognition of the work of so many members of our community, this Rubin & SPHEREx newsletter edition specifically highlights cutting edge science based on and inspired by Spitzer. In the words of Dr. Paul Hertz, Director of Astrophysics 6 Spitzer: The Star-Formation at NASA: Legacy Lives On "Spitzer taught us how important infrared light is to our 8 AKARI Spitzer Survey understanding of our universe, both in our own cosmic 10 Science Impact of SOFIA- neighborhood and as far away as the most distant galaxies. HIRMES Termination The advances we make across many areas in astrophysics in the future will be because of Spitzer's extraordinary legacy." Technical Highlights Though Spitzer is gone, our community remains optimistic and looks forward to the advances that the next generation of IR telescopes will bring.
    [Show full text]
  • IAU Commission 8 Astrometry Transactions Report 2012-2015
    Transactions IAU, Volume XXIXA Proc. XXVIII IAU General Assembly, August 2012 c 2015 International Astronomical Union Thierry Montmerle, ed. DOI: 00.0000/X000000000000000X DIVISION I COMMISSION 8 ASTROMETRY (ASTROMETRY) PRESIDENT Norbert Zacharias VICE-PRESIDENT Anthony Brown PAST PRESIDENT Dafydd Evans ORGANIZING COMMITTEE Li Chen, Naoteru Gouda, Valeri Makarov, Aleksandr Shulga, Jean Souchay, Rama Teixeira, Stephen Unwin 1. Introduction Commission 8 has regularly published triennial reports in the past and the current OC therefore voted to adopt a traditional format also for this special Legacy issue of the IAU Transactions. The outgoing President is grateful for the support of many Commission members who contributed to this report. Our contribution consists of 3 parts: 1) this introduction, providing a general overview and highlights of recent research in astrometry, 2) a summary of the astrometry business & science meeting at the 2015 IAU General Assembly, and 3) the activity report of our Commisson covering the mid-2012 to mid-2015 period. Astrometry is about to be revolutionized by the European Space Agency (ESA) Gaia mission. Regular survey operations began mid-2014. The first data release is expected by mid-2016 and the final catalog by about 2020, depending on the lifetime of the mission, currently expected to be over 5 years. Gaia will provide an optical reference frame with positions, proper motions and parallaxes in the 10 to 300 micro-arcsecond (µas) range (depending on brightness) down to almost 21st magnitude, which will soon make most current optical reference star catalogs obsolete. Radio astrometry continues to provide the defining celestial reference frame by VLBI observations of compact, extragalactic sources.
    [Show full text]
  • NEC Space Business
    Japan Space industry Workshop in ILA Berlin Airshow 2014 NEC Space Business May 22nd, 2014 NEC Corporation Kentaro (Kent) Sakagami (Mr.) General Manager Satellite Systems and Equipment, Global Business Unit E-mail: [email protected] NEC Corporate Profile Company Name: NEC Corporation Established: July 17, 1899 Kaoru Yano Nobuhiro Endo Chairman of the Board: Kaoru Yano President: Nobuhiro Endo Capital: ¥ 397.2 billion (As of Mar. 31, 2013) Consolidated Net Sales: ¥ 3,071.6 billion (FY ended Mar. 31, 2013) Employees: 102,375 (As of Mar. 31, 2013) Consolidated Subsidiaries: 270 (As of Mar. 31, 2013) Financial results are based on accounting principles generally accepted in Japan Page 2 © NEC Corporation 2014 NEC Worldwide: “One NEC” formation in 5 regions Marketing & Service affiliates 77 in 32 countries Manufacturing affiliates 8 in 5 countries Liaison Offices 7 in 7 countries Branch Offices 7 in 7 countries Laboratories 4 in 3 countries North America Greater China NECJ EMEA APAC Latin America (As of Apr. 1, 2014) Page 3 © NEC Corporation 2014 NEC in EMEA 1 NEC in Germany NEC Deutschland GmbH NEC Display Solutions Europe NEC Laboratories Europe (Internal division of NEC Europe Ltd.) NEC Tokin Europe NEC Scandinavia AB in Espoo, 2 NEC in Netherlands Finland NEC Logistics Europe NEC Nederland B.V. NEC Neva Communications Systems NEC Scandinavia AB in Oslo, Norway NEC in the U.K. 3 NEC Scandinavia AB NEC Europe Ltd. NEC Capital (UK) plc NEC in the UK NEC Technologies (UK) NEC in Netherlands NEC Telecom MODUS Limited 3 2 NEC (UK) Ltd.
    [Show full text]
  • Possibilities and Future Vision of Micro/Nano/Pico-Satellites - from Japanese Experiences
    CanSat & Rocket Experiment(‘99~) Hodoyoshiハイブリッド-1 ‘14 ロケット Possibilities and Future Vision of Micro/nano/pico-satellites - From Japanese Experiences Shinichi Nakasuka University of Tokyo PRISM ‘09 CubeSat 03,05 Nano-JASMINE ‘15 Contents • Features of Micro/nano/pico-satellites • Japanese History and Lessons Learned – CanSat to CubeSat “First CubeSat on orbit” – From education to practical applications – Important tips for development • Visions on Various Applications of Micro/nano/pico-satellites • University Space Engineering Consortium (UNISEC) and International Collaborations Micro/nano/pico-satellite “Lean Satellite” Micro-satellite: 20-100kg Nano-satellite: 2-20kg Pico-satellite: 0.5-2kg Japanese Governmental Satellites ALOS-1: 4 ton ASNARO: 500 kg Kaguya: 3 ton Hayabusa: 510 kg Motivation of Smaller Satellites Current Problem of Mid-large Satellites ALOS 4.0 (4t) Trend towards 3.5 larger satellites Weight SELENE ・Enormous cost >100M$ 3.0 (3t) ・Development period >5-10 years 2.5 ・Conservative design (ton 2.0 ・Almost governmental use ・No new users and utilization ideas ) ・Low speed of innovation 1.5 10-50M$ Micro 1.0 Small-sat /Nano /Pico 0.5 Sat 0 1975 1980 1985 1990 1995 2000 2005 <50kg Introduce more variedGEO new players intoOTHERS space. 1-5M$ Innovation by Micro/nano/pico satellites (<100kg) 超小型衛星革命 Education Remote sensing Telescope Weather Bio-engineering Re-entry Rendezvous/ Communication Space Science Atmosphere Exploration High Resolution. docking Universty/venture companies’ innovative idea and development process <10M$
    [Show full text]
  • PUSHING to HIGH REDSHIFT the AKARI Deep Field South (ADF-S)
    Publications of the Korean Astronomical Society pISSN 1225-1534 32: 275 ∼ 279, 2017 March eISSN 2287-6936 c 2017. The Korean Astronomical Society. All rights reserved. https://doi.org/10.5303/PKAS.2017.32.1.275 THE AKARI DEEP FIELD SOUTH: PUSHING TO HIGH REDSHIFT David L. Clements1 1Blackett Laboratory, Physics Department, Imperial College, Prince Consort Road, London SW7 2AZ, UK E-mail: [email protected] (Received July 23, 2015; Revised October 20, 2016; Accepted October 20, 2016) ABSTRACT The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/submm images, including studies of cold dust in nearby galaxies, the identification of strongly lensed distant galaxies, and the use of colour selection to find candidate very high redshift sources. I conclude that the potential for significant new results from the ADF-S is very great. The addition of new wavelength bands in the future, eg. from Euclid, SKA, ALMA and elsewhere, will boost the importance of this field still further. Key words: astronomy | astrophysics | journals: individual: PKAS 1. INTRODUCTION wavelengths from X-Ray to radio in multiple bands and in fields that are tens to hundreds of square degrees in The quest for rare objects, be they extreme objects at size. In the future we will have very large fractions of the high redshift or unusual in some other way, requires sur- sky observed to depths and resolutions comparable to veys of large areas of the sky using instruments that op- those achieved in the HDF thanks to the Euclid mission erate at a range of different wavelengths.
    [Show full text]
  • Introduction of NEC Space Business (Launch of Satellite Integration Center)
    Introduction of NEC Space Business (Launch of Satellite Integration Center) July 2, 2014 Masaki Adachi, General Manager Space Systems Division, NEC Corporation NEC Space Business ▌A proven track record in space-related assets Satellites · Communication/broadcasting · Earth observation · Scientific Ground systems · Satellite tracking and control systems · Data processing and analysis systems · Launch site control systems Satellite components · Large observation sensors · Bus components · Transponders · Solar array paddles · Antennas Rocket subsystems Systems & Services International Space Station Page 1 © NEC Corporation 2014 Offerings from Satellite System Development to Data Analysis ▌In-house manufacturing of various satellites and ground systems for tracking, control and data processing Japan's first Scientific satellite Communication/ Earth observation artificial satellite broadcasting satellite satellite OHSUMI 1970 (24 kg) HISAKI 2013 (350 kg) KIZUNA 2008 (2.7 tons) SHIZUKU 2012 (1.9 tons) ©JAXA ©JAXA ©JAXA ©JAXA Large onboard-observation sensors Ground systems Onboard components Optical, SAR*, hyper-spectral sensors, etc. Tracking and mission control, data Transponders, solar array paddles, etc. processing, etc. Thermal and near infrared sensor for carbon observation ©JAXA (TANSO) CO2 distribution GPS* receivers Low-noise Multi-transponders Tracking facility Tracking station amplifiers Dual- frequency precipitation radar (DPR) Observation Recording/ High-accuracy Ion engines Solar array 3D distribution of TTC & M* station image
    [Show full text]
  • Observatories in Space
    OBSERVATORIES IN SPACE Catherine Turon GEPI-UMR CNRS 8111, Observatoire de Paris, Section de Meudon, 92195 Meudon, France Keywords: Astronomy, astrophysics, space, observations, stars, galaxies, interstellar medium, cosmic background. Contents 1. Introduction 2. The impact of the Earth atmosphere on astronomical observations 3. High-energy space observatories 4. Optical-Ultraviolet space observatories 5. Infrared, sub-millimeter and millimeter-space observatories 6. Gravitational waves space observatories 7. Conclusion Summary Space observatories are having major impacts on our knowledge of the Universe, from the Solar neighborhood to the cosmological background, opening many new windows out of reach to ground-based observatories. Celestial objects emit all over the electromagnetic spectrum, and the Earth’s atmosphere blocks a large part of them. Moreover, space offers a very stable environment from where the whole sky can be observed with no (or very little) perturbations, providing new observing possibilities. This chapter presents a few striking examples of astrophysics space observatories and of major results spanning from the Solar neighborhood and our Galaxy to external galaxies, quasars and the cosmological background. 1. Introduction Observing the sky, charting the places, motions and luminosities of celestial objects, elaborating complex models to interpret their apparent positions and their variations, and figure out the position of the Earth – later the Solar System or the Galaxy – in the Universe is a long-standing activity of mankind. It has been made for centuries from the ground and in the optical wavelengths, first measuring the positions, motions and brightness of stars, then analyzing their color and spectra to understand their physical nature, then analyzing the light received from other objects: gas, nebulae, quasars, etc.
    [Show full text]
  • The AKARI/IRC Mid-Infrared All-Sky Survey*
    A&A 514, A1 (2010) Astronomy DOI: 10.1051/0004-6361/200913811 & c ESO 2010 Astrophysics Science with AKARI Special feature The AKARI/IRC mid-infrared all-sky survey D. Ishihara1,2, T. Onaka2, H. Kataza3,A.Salama4, C. Alfageme4,, A. Cassatella4,5,6,N.Cox4,, P. García-Lario4, C. Stephenson4,†,M.Cohen7, N. Fujishiro3,8,‡, H. Fujiwara2, S. Hasegawa3,Y.Ita9,W.Kim3,2,§, H. Matsuhara3, H. Murakami3,T.G.Müller10, T. Nakagawa3, Y. Ohyama11,S.Oyabu3,J.Pyo12,I.Sakon2, H. Shibai13,S.Takita3, T. Tanabé14,K.Uemizu3,M.Ueno3,F.Usui3,T.Wada3, H. Watarai15, I. Yamamura3, and C. Yamauchi3 1 Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-860, Japan e-mail: [email protected] 2 Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan 3 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan 4 European Space Astronomy Center (ESAC), Villanueva de la Cañada, PO Box 78, 28691 Madrid, Spain 5 INAF, Istituto di Fisica dello Spazio Interplanetario, via del Fosso del Cavaliere 100, 00133 Roma, Italy 6 Dipartimento di Fisica, Universita’ Roma Tre, via della Vasca Navale 100, 00146 Roma, Italy 7 Radio Astronomy Laboratory, University of California, Berkeley, USA 8 Department of Physics, Faculty of Science, University of Tokyo, 3-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0003, Japan 9 National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan 10 Max-Planck-Institut
    [Show full text]
  • THE BURIED STARBURST in the INTERACTING GALAXY II Zw 096 AS REVEALED by the SPITZER SPACE TELESCOPE
    The Astronomical Journal, 140:63–74, 2010 July doi:10.1088/0004-6256/140/1/63 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE BURIED STARBURST IN THE INTERACTING GALAXY II Zw 096 AS REVEALED BY THE SPITZER SPACE TELESCOPE H. Inami1,2,3, L. Armus1, J. A. Surace1, J. M. Mazzarella4,A.S.Evans5, D. B. Sanders6, J. H. Howell1,4, A. Petric1, T. Vavilkin7, K. Iwasawa8, S. Haan1,E.J.Murphy1, S. Stierwalt1, P. N. Appleton9, J. E. Barnes6, G. Bothun10, C. R. Bridge11, B. Chan4, V. Charmandaris12,13,14, D. T. Frayer9, L. J. Kewley6,D.C.Kim5, S. Lord4, B. F. Madore4,15, J. A. Marshall1, H. Matsuhara2, J. E. Melbourne11,J.Rich6, B. Schulz9, H. W. W. Spoon16, E. Sturm17,V.U6,18, S. Veilleux19, and K. Xu9 1 Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125, USA; [email protected] 2 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Japan 3 Department of Space and Astronautical Science, The Graduate University for Advanced Studies, Japan 4 Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA 5 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 6 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 7 Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794, USA 8 ICREA and Universitat de Barcelona, Mart´ıiFranques` 1, Barcelona, Spain 9 NASA Herschel Science Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA 10 Physics Department, University of Oregon, Eugene, OR 97402, USA 11 California Institute of Technology, MS 320-47, Pasadena, CA 91125, USA 12 Department of Physics, University of Crete, P.O.
    [Show full text]