Monitoring and Diagnostic System for AKARI and HINODE

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring and Diagnostic System for AKARI and HINODE Trans. JSASS Space Tech. Japan Vol. 7, No. ists26, pp. Tf_1-Tf_6, 2009 ISACS-DOC: Monitoring and Diagnostic System for AKARI and HINODE By Mitsue MIZUTANI1), Toshinori HIROSE2), Ryoji TAKAKI3) and Hideyuki HONDA3) 1)Solution Planning Dept., Fujitsu Advanced Solutions Limited, Yokohama Japan; 2)Science Solutions Div., Fujitsu Limited, Chiba Japan; 3)Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara Japan (Received May 8th, 2008) ISACS-DOC (Intelligent Satellite Control Software-DOCtor), which is an automatic monitoring and diagnostic system for scientific satellites or spacecraft, aims to rapidly and accurately capture important changes and sign of anomaly during daily satellite operations. After three systems for deep space missions, the new generation of ISACS-DOC with a higher speed processing performance had been developed for the satellites in earth orbit, AKARI and HINODE. This paper reports on the newest ISACS-DOC about enhanced functions, operating status, and an approach to create standards to build and keep up the knowledge data base. Continuous enhancements through the actual operations are the advantage of ISACS-DOC. Key Words: monitoring-and-diagnosing, knowledge-base, satellite, safe-operation, cost-reduction 1. Introduction sample-return probe HAYABUSA (launched in 2003). ISACS-DOC is independent from any other existing In order to satisfy the high-grade observation satellite operation systems and has high flexibility to add requirements of a scientific satellite, the onboard and new functions and monitoring methods, so it acts as a ground operation systems are becoming more complicated pilot system to improve satellite operation systems. The and elaborate. For this reason there is a real need to monitoring and diagnostic techniques verified by this ensure accurate and safe satellite operations. Since 1992 system will contribute to the continuous improvement of Institute of Space and Astronautical Science of Japan satellite operational technologies through their Aerospace Exploration Agency (ISAS/JAXA) has been incorporation into future satellite control systems. conducting research and development on a ground system The next-generation of ISACS-DOC with a higher for monitoring and diagnosing the status of satellites. At processing performance has been developed (4) and put the beginning of the research and development of the into operation for AKARI (ASTRO-F) since it launched in system, no similar systems which diagnose a whole 2006. Infrared Imaging Surveyor AKARI is in a satellite in practical use could be found in Japan and any low-altitude earth orbit and different in various aspects other countries. This system is called Intelligent Satellite from the deep space probes targeted by the past Control Software-DOCtor (ISACS-DOC) (1, 2, 3). ISACS-DOC systems. The greatest difference in terms of The purposes of ISACS-DOC are to accurately grasp ISACS-DOC for AKARI is the requirement for signs of serious change and abnormality of any onboard high-speed data processing. The short visible time (deep system during regular operation without the need of space spacecraft HAYABUSA: 8 hours, AKARI: 10 experts in the satellite control room, to issue an alert on a min/path and 4 paths/day) and high-rate downlink data display or send out an e-mail, to enhance the safety of transfer (HAYABUSA: 16 Kbps, AKARI: 4 Mbps) means satellite operations, and consequently to reduce that a large volume of data needs to be processed in a operational costs. ISACS-DOC can be positioned as a short period of time. Moreover, it is preferable to process system which supports monitoring by an operator in both real and reproduced telemetry data at the same time. regular operation and diagnosis by an expert in abnormal For high-speed data processing, the processing operation. If the cause of an incident or irregularity can be performance of ISACS-DOC for AKARI is enhanced by identified with a high degree of reliability, the system conducting optimization of data processing procedures. should serve up diagnostic results and solutions. However, The newest ISACS-DOC has been developed for if the cause cannot be identified from detected signs, it is HINODE (SOLAR-B) based on the system for AKARI. preferable to consult an expert, presenting the related Solar Observatory HINODE is also in a low-altitude earth information. ISACS-DOC should help the expert to orbit and its requirements for monitoring and diagnostic diagnose the incident or abnormality. To do so, the are similar to AKARI. information from both the satellite and ground facilities Both of ISACS-DOCs for AKARI and HINODE needs to be integrated and presented. continue to operate successfully. So far, ISACS-DOC system has been applied to the This paper reports on the enhanced functions, operating following deep space missions - the Geomagnetic status, and an approach to create standards to build and Observation Satellite GEOTAIL (launched in 1992), Mars keep up the knowledge data base of the monitoring and Explorer NOZOMI (launched in 1998), and a diagnostic system ISACS-DOC. Copyright© 2009 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved. Tf_1 Trans. JSASS Space Tech. Japan Vol. 7, No. ists26 (2009) Figure 1: Operation image of ISACS-DOC for satellites in earth orbit 2. Overview of ISACS-DOC Figure 2 shows the main window of ISACS-DOC. 2.1. Outline of ISACS-DOC Detected anomalies are listed in the main part of the Figure 1 shows an operation image of ISACS-DOCs for window, which is the most important region for AKARI and HINODE which are satellites in earth orbit. ISACS-DOC users. Each detected anomaly is linked to its ISACS-DOC system receives both real time and monitor window (Fig. 3), so that the users can grasp the reproduced telemetry data from the data distribution current status of the anomaly. server, and monitors and diagnoses them. The diagnosed results are sent by e-mail and referable though web browser display. ISACS-DOC consists of following 6 main functions. 1. Import: the system imports knowledge data base and telemetry definition data base, and extracts telemetry entry, which are required in monitoring and diagnosing. 2. Telemetry reception: the system receives telemetry data in real time, decomposes them to each telemetry entry, extracts status values, converts to physical Figure 2: Main window of ISACS-DOC values and finally creates primary data, according to the telemetry definition data base. 3. Monitoring data creation: the system creates monitoring data which are necessary for monitoring and diagnosing, based on the knowledge data base. A filtering procedure and limit check are applied to primary data, creating secondary data. Compound data are created from multiple data: secondary data and compound data, as needed. 4. Monitoring and diagnosing: the system monitors and diagnoses according to the definition of knowledge data base. 5. Display: monitored and diagnosed results are shown through a HTTP server. 6. Notification by e-mail: monitored and diagnosed results are sent by e-mail after the spacecraft operation or monitoring and diagnosing of reproduced telemetry Figure 3: Monitor window with detailed information data are completed. Tf_2 M. MIZUTANI et al.: ISACS-DOC: Monitoring and Diagnostic System for AKARI and HINODE The monitor window (Fig. 3) shows detailed 3.1. System improvement information: 1) current values of the anomaly data, 2) The following functions were enhanced in the body of conditions of anomaly detection, 3) setting values of limit ISACS-DOC. checks, 4) time series plots of not only the anomaly data a) E-mail sortation but also the related data, which provides valuable clues The purpose of the e-mail sortation is to serve and for an understanding of the circumstances, and 5) direct the alert e-mails to the appropriate persons. messages of anomaly descriptions and the way to ISACS-DOC notifies monitored and diagnosed results response. by e-mail. As the e-mail is made after the series of On the left side of the main window (Fig. 2), there is a telemetry data form the spacecraft real time operation or list menu for all monitoring items, which show current the data reproduced and downloaded operation are status of monitoring data regardless of whether an completed, the monitored and diagnosed results contain anomaly is detected. Each listed monitoring item is linked some monitoring alert items in a variety of subsystems (if to its monitor window (Fig. 3). any). The function of e-mail sortation filters the results, edits the alert e-mail by the kind of subsystems, then 2.2. Knowledge data base serves and directs the e-mails to the appropriate persons. Diagnostic requirements are defined in the knowledge b) Watchdog of ISACS-DOC itself data base. The data used for diagnosis and detecting the The purpose of the watchdog of ISACS-DOC is to early signs or anomaly are described on mainly these three monitor ISACS-DOC system itself and notify the kinds of spreadsheets, as follows. administrator of ISACS-DOC by e-mail of operation status of ISACS- DOC system. 1. Diagnostic input data (status and analog data): the ISACS-DOC system works with those three processes, input data which are necessary for monitoring and the monitoring process (real time), the monitoring process diagnosis are defined in these status and analog data (reproduced), and the monitoring control process. The sheets. For example, the telemetry name, the limit function of the watchdog of ISACS-DOC checks itself values for limit check, the collecting cycle and period every 30 minutes whether those processes are alive or not, of the data, the filtering type and valid/invalid and if an ISACS-DOC system error should be found, conditions. sends DOC-error e-mail every 30 minutes. If no 2. Compound data: the new data which are created with ISACS-DOC system error is found, it sends DOC-alive input data or other compound data in ISACS-DOC are e-mail once a day.
Recommended publications
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • Hinode Project and Science Center (Hinode-SC)
    Hinode Project and Science Center (Hinode-SC) Shinsuke Imada (Nagoya Univ., ISEE) Characteristics of the Advanced Telescopes | Hinode Science Center at NAOJ 2019/10/13 22(30 For Researchers 日本語 シェア Tweet “Hinode” Unveils To do research Information Gallery For Researchers the Mysteries of the Sun using Hinode data TOP "Hinode" Unveils the Mysteries of the Sun Characteristics of the Advanced Telescopes Solar Observing Satellite "Hinode" (SOLAR-B) | Hinode Science Center at NAOJ 2019/10/13 22(29 "Hinode" Unveils Characteristics of the Advanced Telescopes the Mysteries of the For Researchers 日本語 Sun Tweet シェア Overview of “Hinode” “Hinode” Unveils To do research Characteristics of the Advanced Telescopes Solar Observing Information Gallery For Researchers Satellite "Hinode" the Mysteries of the Sun using Hinode data (SOLAR-B) The Sun's atmosphere is comprised of layers. The layers beneath the surface (photosphere) cannot be TOP "Hinode" UnveilsSolar the Mysteries of the Sun ObservingSolar Observing Satellite "Hinode" (SOLAR-B) Satelliteseen “ directly,Hinode but the upper layers ”above (SOLAR the photosphere each emit- differentB) wavelengths of lights. So, About the "Hinode" Project you can see each layer by changing the observing wavelength. By loading three telescopes observing in "Hinode" Unveils Solar Observing Satellite "Hinode" (SOLAR-B) different wavelengththe Mysteries ranges, of the Hinode can simultaneously observe from the photosphere to the corona (upper atmosphere).Sun Characteristics of the Advanced Telescopes Overview of “Hinode”
    [Show full text]
  • AKARI: Astronomical IR Satellite MLHES Mission Program
    Probing Ancient Mass Loss with AKARI’s Extended Dust Emission Objects Rachael Tomasino1, Dr. Toshiya Ueta1,2, Dr. Yamamura Issei2, Dr. Hideyuki Izumiura3 1University of Denver, USA; 2Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Japan, 3Okayama Astrophysical Observatory, Japan AKARI: Astronomical IR Satellite FIS-AKARI Slow-scan Tools! Extended Emission Calibration! AKARI (formerly ASTRO-F), is the second Japanese satellite FAST is a program that allows for interactive Original calibration of the FIS detector was done using diffuse galactic cirrus emission dedicated to infrared (IR) astronomy, from the Institute of assessment of the data quality and on-the-fly with low photon counts. On the other hand, bright point sources can cause the slow Space and Astronautical Science (ISAS) of the Japanese corrections to the time-series data on a pixel-by- transient response effect because of high photon counts. Marginally extended sources Aerospace Exploration Agency (JAXA). Its main objective is pixel basis in order to manually correct glitches consist of regions of high and low photon counts, and therefore, only parts of them suffer to perform an all-sky survey with better spatial resolution and that would have been missed in the pipeline from the slow transient response effect. Hence, we needed to devise a specific method to wider wavelength coverage than IRAS (first US, UK, Dutch process. These corrections include: (1) eliminate address the detector response as a whole. This method uses a contour aperture to include infrared satellite launched in 1983), mapping the entire sky in bad on-sky calibration sequences, (2) flag out both the faint and bright emission by setting a threshold of background + 3#.! six infrared bands.
    [Show full text]
  • Co-Aligned IRIS, SDO and Hinode Data Cubes Release 1.0
    Co-aligned IRIS, SDO and Hinode data cubes Release 1.0 Milan Gošic´ Feb 26, 2020 CONTENTS 1 Introduction 1 1.1 About this Guide.............................................1 1.2 Synopsis of the IRIS, Hinode and SDO missions............................1 1.3 Hinode and SDO data cubes co-aligned with IRIS observations....................2 2 Finding and downloading IRIS-SDO-Hinode co-aligned data cubes5 2.1 Using the IRIS Webpage (HCR).....................................5 2.2 Using SSWIDL..............................................5 3 Reading and browsing IRIS-SDO-Hinode co-aligned data cubes 11 3.1 Reading level 2 co-aligned SDO and Hinode datasets.......................... 11 3.2 Browsing co-aligned SDO and Hinode data cubes with CRISPEX................... 13 i ii CHAPTER ONE INTRODUCTION 1.1 About this Guide The purpose of this guide is to provide detailed instructions on how users can find, download, browse, and analyze co-aligned level 2 data obtained with The Interface Region Imaging Spectrograph (IRIS), the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), and Hinode/SOT level 2 data. The IRIS team at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) created new data cubes consisting of the Hinode/SOT and SDO/AIA images co-aligned with the simultaneous IRIS observations. These datasets all have the same IRIS level 2 FITS format, therefore can be accessed and examined using the IRIS SolarSoft software. In this guide, we provide step by step instructions how to access, read, and visualize these newly created co-aligned data cubes. In particular, we describe: • How to find data using SolarSoft IDL routines; • How to acquire data sets using either SolarSoft or Heliophysics Coverage Registry (HCR); • How to read data and visualize them using SolarSoft routines or Crisp Spectral Explorer (CRISPEX).
    [Show full text]
  • ASTRO-F Observer's Manual
    ASTRO-F Observer’s Manual Version 3.2 — for Open Time Observation Planning — ASTRO-F User Support Team in Institute of Space and Astronautical Science / JAXA contact: iris [email protected] European Space Astronomy Centre / ESA contact: http://astro-f.esac.esa.int/esupport/ November 29, 2005 Version 3.2 (November 29, 2005) i Revision Record 2005 Nov. 29: Version 3.2 released. Updated description of IRC FoV and slit (Section 5.1.4 and 5.1.5). Updated IRC04 detection and saturation limits. Also improve the description (Section 5.5.9). Section 5.4.2 revised to clarify the point. Units for Ho given value in p.113. 2005 Nov. 8: Version 3.1 released. Updated Visibility Map for Open Time Users (Figure 3.4.3) Information for the handling of Solar System Object observations (Section 3.4) Updated saturation limits for FTS (FIS03) mode (Table 4.4.16) IRC04 detection limits for NG+Np added (Table 5.5.25,5.5.26) Updated worked examples using the latest versions of the Tools (Section B) ESAC web pages URL and Helpdesk contact address updated Numerous errors and typos corrected 2005 Sep.20: Version 3.0 released. Contents 1 Introduction 1 1.1Purposeofthisdocument............................... 1 1.2RelevantInformation.................................. 3 2 Mission Overview 5 2.1TheASTRO-FMission................................ 5 2.2 Satellite . ........................................ 6 2.2.1 TheBusModule................................ 6 2.2.2 AttitudeDeterminationandControlSystem................. 7 2.2.3 Cryogenics................................... 8 2.3Telescope........................................ 9 2.3.1 Specification.................................. 9 2.3.2 Pre-flightperformance............................. 10 2.4Focal-PlaneInstruments................................ 11 2.4.1 SpecificationOverview............................. 11 2.4.2 Focal-PlaneLayout..............................
    [Show full text]
  • Development of 60Μm Pitch Cdte Double-Sided Strip Detector for FOXSI-3 Rocket Experiment
    Development of 60µm pitch CdTe double-sided strip detector for FOXSI-3 rocket experiment Kento Furukawa(U-Tokyo, ISAS/JAXA) Shin'nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe(ISAS/JAXA), Koichi Hagino(Tokyo University of Science), Shin'ichiro Takeda(OIST), P.S. Athiray, Lindsay Glesener, Sophie Musset, Juliana Vievering (U. of Minnesota), Juan Camilo Buitrago Casas , Säm Krucker (SSL/UCB), and Steven Christe (NASA/GSFC) 1 2 CdTe semiconductor and diode device Cadmium Telluride semiconductor : • High density • Large atomic number • High efficiency Issue : small µτ product especially for holes 260eV(FWHM) • Uniform & thin device @6.4keV 1400V,-40℃ • Schottky Diode (Takahashi et al. 1998 ) High bias voltage full charge collection + high energy resolution Takahashi et al. (2005) 3 Application of CdTe Diode Double-sided Strip Detector Watanabe et al. 2009 Anode(Pt): Ohmic contact Cathode(Al): Schottky contact Astrophysical Application • Hard X-ray Imager(HXI) onboard Hitomi(ASTRO-H) satellite • FOXSI rocket mission Medical Application • Small animal SPECT system (OIST/JAXA) 4 Hard X-ray study of the Sun Observation Target : the Sun Corona and flare Scientific Aim • Coronal Heating (thermal emission) • Particle Acceleration (non-thermal emission ) →Sensitive Hard X-ray imaging and spectral observation is the key especially for small scale flares study Soft X-ray image by Hinode (micro and nano) (NAOJ/JAXA) So far only Indirect Imaging e.g. RHESSI spacecraft (Rotational Modulation collimator) No direct imaging in hard X-ray band for solar mission 5 FOXSI rocket mission FOXSI experiment (UCB/SSL, NASA, UMN, ISAS/JAXA) Indirect Direct Imaging Spectroscopy with Focusing Optics in Hard X-ray Hard X-ray telescopes + CdTe focal plane detectors FOXSI’s hard X-ray telescope clearly identified a micro-flare with high S/N ratio Direct Telescope Angular resolution : 5 arcsec (FWHM) Focal plane detector 50µm on focal plane Krucker et al.
    [Show full text]
  • Message from the Director General September 2017 Saku Tsuneta Director General
    Message from the Director General September 2017 Saku Tsuneta Director General Institute of Space and Astronautical Science Japan Aerospace Exploration Agency On April 28, 2016, the Japan former ISAS project managers, and levels, the satellite was declared to Aerospace Exploration Agency an Action Plan for Reforming ISAS have entered into its scheduled orbit (JAXA) made the difficult decision Based on the Anomaly Experienced in March 2017. The successful start to terminate attempts to restore by Hitomi was developed. In of the ARASE mission is a testament communication with the X-ray addition, “town hall meetings” were to the dedication and skills across Astronomy Satellite ASTRO-H (also held to share the spirit and practice JAXA. known as HITOMI), which was of the action plan with all ISAS ISAS is currently operating six launched on February 17, 2016, due employees. The plan, which was satellites and space probes: ARASE, to the communication anomalies applied to launch preparations of Hayabusa2, HISAKI, AKATSUKI, that occurred on March 26, 2016. the geospace exploration satellite HINODE, and GEOTAIL. Asteroid Since that time, in consultation with ARASE, contributed to the successful Explorer Hayabusa2, which is experts inside as well as outside and stable operation of that satellite, currently on its planned trajectory JAXA, the Institute of Space and and will be applied to other projects towards the 162173 Ryugu asteroid Astronautical Science (ISAS) has such as the Smart Lander for under ion engine power, is equipped been making every possible effort Investigating Moon (SLIM). The plan- with new technologies for solar to determine what went wrong, and do-check-act (PDCA) cycle should system exploration such as long- what can be done to prevent this work to further refine both current distance communication using Ka- from happening again in the future.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The AKARI FU-HYU Galaxy Evolution Program: First Results from The
    A&A 514, A9 (2010) Astronomy DOI: 10.1051/0004-6361/200913383 & c ESO 2010 Astrophysics Science with AKARI Special feature The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field C. P. Pearson1,2,3, S. Serjeant3, M. Negrello3,T.Takagi4, W.-S. Jeong5, H. Matsuhara4,T.Wada4,S.Oyabu4, H. M. Lee6,andM.S.Im6 1 Space Science and Technology Department, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK e-mail: [email protected] 2 Department of Physics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1J 1B1, Canada 3 Astrophysics Group, Department of Physics, The Open University, Milton Keynes MK7 6AA, UK 4 Institute of Space and Astronautical Science, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229 8510, Japan 5 KASI, 61-1, Whaam-dong, Yuseong-gu, Deajeon 305-348, South Korea 6 Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742, Korea Received 30 September 2009 / Accepted 9 February 2010 ABSTRACT The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands.
    [Show full text]
  • Arxiv:0710.2934V2 [Astro-Ph] 17 Oct 2007
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere Bart De Pontieu1, Scott McIntosh2,3, Viggo H. Hansteen4,1, Mats Carlsson4 [email protected], [email protected], [email protected],[email protected] C.J. Schrijver1, T.D. Tarbell1, A.M. Title1, R.A. Shine1 [email protected], [email protected], [email protected], [email protected] Y. Suematsu5, S. Tsuneta5, Y. Katsukawa5, K. Ichimoto5, T. Shimizu6 S. Nagata7 [email protected],[email protected], [email protected], [email protected], [email protected], [email protected] 1Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA 2High Altitude Observatory, National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA 3Department of Space Studies, Southwest Research Insititute, 1050 Walnut St, Suite 400, Boulder, CO 80302, USA 4Institute of Theoretical Astrophysics, University of Oslo, PB 1029 Blindern, 0315 Oslo Norway 5National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan 6ISAS/JAXA, Sagamihara, Kanagawa, 229-8510, Japan 7Kwasan and Hida Observatories, Kyoto University,Yamashina, Kyoto, 607-8471, Japan (Received 2007 June 10; accepted accepted for Hinode special issue) Abstract We use high-resolution observations of the Sun in Ca II H (3968A)˚ from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties.
    [Show full text]
  • Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71
    Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156,
    [Show full text]
  • Special Spitzer Telescope Edition No
    INFRARED SCIENCE INTEREST GROUP Special Spitzer Telescope Edition No. 4 | August 2020 Contents From the IR SIG Leadership Council In the time since our last newsletter in January, the world has changed. 1 From the SIG Leadership Travel restrictions and quarantine have necessitated online-conferences, web-based meetings, and working from home. Upturned semesters, constantly shifting deadlines and schedules, and the evolving challenge of Science Highlights keeping our families and communities safe have all taken their toll. We hope this newsletter offers a moment of respite and a reminder that our community 2 Mysteries of Exoplanet continues its work even in the face of great uncertainty and upheaval. Atmospheres In January we said goodbye to the Spitzer Space Telescope, which 4 Relevance of Spitzer in the completed its mission after sixteen years in space. In celebration of Spitzer, Era of Roman, Euclid, and in recognition of the work of so many members of our community, this Rubin & SPHEREx newsletter edition specifically highlights cutting edge science based on and inspired by Spitzer. In the words of Dr. Paul Hertz, Director of Astrophysics 6 Spitzer: The Star-Formation at NASA: Legacy Lives On "Spitzer taught us how important infrared light is to our 8 AKARI Spitzer Survey understanding of our universe, both in our own cosmic 10 Science Impact of SOFIA- neighborhood and as far away as the most distant galaxies. HIRMES Termination The advances we make across many areas in astrophysics in the future will be because of Spitzer's extraordinary legacy." Technical Highlights Though Spitzer is gone, our community remains optimistic and looks forward to the advances that the next generation of IR telescopes will bring.
    [Show full text]