Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71

Total Page:16

File Type:pdf, Size:1020Kb

Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71 Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156, 169, 183 HCS 209 acceleration 259 jovian electrons 195, 198 ACRs (anomalous cosmic rays) 151 diffusive transport 198 composition 165 latitudinal gradient 218, 227À228 fast wind 154 electrons 220, 223 GCRs (galactic cosmic rays) 151 energy dependence 221 HCS 155 LIS (local interstellar spectrum 219 ICME 154, 183 magnetospheric particles 151 local interstellar spectra 212 origin 258 modulation 152 recurrent 155 11-year cycle 201, 203, 214, 260 reservoir 179, 270 22-year cycle 215 scatter-free propagation 183 charge-sign dependence 229, 232 seed particles 156 compound modeling 215 SEP (solar energetic particles) 151, 154, GMIRs 214 259 radial gradient 232 shock accelerated particles 151 step-like changes 215 slow wind 154 neutron monitor 29, 259 solar cycle variation 165 north–south asymmetry 120, 219 solar maximum 159 origin 196, 258 solar minimum 152, 156 penetrating radiation 195 transients 183 radial gradient 202, 226, 228 transport 169 recurrent 209, 222 solar minimum 216 fast-latitude scan (FLS) 155 transport 34 FIP (First Ionization Potential) effect 58 see transport equation fractionation 58 cross-field diffusion 112 flares 22, 28, 29, 164, 171, 259 Fisk model 112 FLS 232 Victor Hess 195 FLS I, II, III (Ulysses fast-latitude scans I, CRR (corotating rarefaction region) 108, II, and III) 251 117 GAS 275 GCR (galactic cosmic rays) 195, 197 Deutsche Forschungsgemeinschaft (DFG) 239 acceleration 195 modulation 196 dust 260, 266 geomagnetic activity Hale cycle 266 recurrent 32 global merged interaction region see GMIR EC (ecliptic crossing) 232 GMIR (global merged interaction regions) electron 15, 202 bi-directional streaming 268 GOES 172 Electron, Proton, and Alpha Monitor Great Heliospheric Observatory 71 (EPAM) 172 GSFC 227 Index 283 Hale cycle 25, 254 Parker field model 80, 83À84, 112, 116, Hale’s law 26 208, 253, 87, 81 Halloween Storms see flares PMS (planar magnetic structure) 110 HCS see heliospheric current sheet random walk 156 HCS (heliospheric current sheet) 13, 15, 32, SB (sector boundary) 82 43, 96, 254 sector 82, 96, 98, 128, 253 inclination 98, 101, 128, 130, 97 see also HMF, Archimedian spiral 116 neutral line 105 sub-Parker spiral 117, 266 normal component 100 Parker spiral see also HMF, Archimedian RD (rotational discontinuity) 100 spiral TD (tangential discontinuity) 99 thickness 101 vortex street 120 À tilt 34, 36À37, 46, 63, 130, 164, 226 HPS (heliospheric plasma sheet) 99 100, HELIOS missions 42, 71, 105, 255 101 heliosphere 1, 16, 251 bow shock 211 IBEX (Interstellar Boundary EXplorer) heliopause 208, 211 mission 274 inner heliosheath 200, 210 ICE (International Cometary Explorer) 17, outer heliosheath 211 201 solar maximum 46 ICME (interplanetary CME) 61À62, 64, solar minimum 44 123, 256 termination shock 197, 200, 210À211, 251, 263 composition 65 cosmic ray modified shock 212 latitude distribution 66 reverse shock 211 overexpanding 66, 270 Heliosphere Instrument for Spectra, IGY see International Geophysical Year Composition, and Anisotropy at IMF (interplanetary magnetic field) 79 Low Energies (HI-SCALE) 50, 152 IMP (Interplanetary Monitoring Platform) heliospheric current sheet see HCS mission 71, 172, 175, 200À201 heliospheric magnetic field see HMF International Cometary Explorer see ICE HI-SCALE see Heliosphere Instrument for International Geophysical Year (IGY) 6, Spectra, Composition, and 195 Anisotropy at Low Energies International Space Science Institute (ISSI) High Energy Telescope (HET) 152, 172 239 Hinode mission 257 International Sun–Earth Explorer-3 HMF (heliospheric magnetic field) 21, 2, (ISEE3) 17, 42, 122 36, 79, 230, 264 interplanetary magnetic field see IMF Aþ,AÀ cycles 34, 202, 205, 225 Interplanetary Monitoring Platform (IMP) Archimedian spiral 35, 81, 87, 93, 128 17 BN 93 Interstellar Boundary Explorer spacecraft BR 84, 87, 134, 264 current sheet 100 (IBEX) 18 deviation 170, 208, 261 Interstellar Heliopause Explorer mission Fisk model 60, 209, 223, 262 219 flux deficit 95, 119 Interstellar Probe mission 219 magnetic cloud 124 IPS (interplanetary scintillation) 251 north–south asymmetry 265 ISPM (International Solar Polar Mission) open flux 84, 87, 134 see Ulysses 43 284 Index JE 232 PCH (polar coronal hole) 104 Joy’s Law see active region tilt PFSS (potential field source surface model) 32À33, 101, 33, 35, 98, 102, 128, KET 230 130, 254, 33, 98 pickup ions 49, 166 LASCO 64 inner source 166 LIC (local interstellar cloud) 9À10 Pioneer missions 199, 211, 255 À LISM (local interstellar medium) 1 2, 5, 7, Pioneer Venus Orbiter (PVO) 122 12, 200, 211 polar coronal hole see PCH Low Energy Telescope (LET) 163 polar crown prominence 105, 124, 133 potential field source surface (PFSS) 178 magnetic cloud 124 magnetic field see heliospheric magnetic potential field source surface model see field, solar magnetic field PFSS 32 magnetic holes 68 preferred longitude (see active longitude) Mariner 2 mission 41 Maunder Minimum 22 quiet time electron increases 198 merged interaction region (MIR) 181, 214, 270 MHD (magnetohydrodynamic) 80, 102, radio emission 134, 211, 254 Type II 268 microstreams 69 Type III 155, 170, 173, 268 minimum variance analysis 101 most probable value (MPV) 88 RHESSI (Ramaty High Energy Solar Mount Wilson Observatory 25 Spectroscopic Imager) 21 MTOF 53 rotation, solar 79À80, 83, 87, 90 multi-spacecraft observations 168 differential rotation 90 RTG 70 Nancay RadioHeliograph 171 RTN 80 NASA (National Aeronautics and Space Administration) 5, 37 NOAA (National Oceanic and SCR (solar corpuscular radiation) 41 Atmospheric Administration) 18 SDO (Solar Dynamics Observatory) 257 NSO/Kitt Peak 25 sector boundary see HMF, SB NSSDC 197 shock wave 81, 108 diffusive acceleration 51 O-I, O-II, O-III (Ulysses orbits I, II, and FS (forward shock) 62, 108, 271 III) 251 ICME 268 Out-of-the-Ecliptic (OOE) 18 particle acceleration 111, 156 RS (reverse shock) 63, 108, 154, 271 Parker model see HMF 80 SI (stream interface) 108, 151 particle acceleration diffusive shock acceleration 112, 158 Skylab mission 254, 256 Fermi acceleration 112 SMM (Solar Maximum Mission) 256 gradual 170 SOHO (Solar Heliospheric Observatory) 1, impulsive 170 13, 21, 71, 200, 251 shock drift acceleration 112 CELIAS 53 solar sources 170 SUMER 56 Index 285 solar activity cycle 1, 12, 21, 27, 254, 265 fast wind 44 asymmetry 22 corona hole 44 cycle 23 27 FIP effect 258, 262 declining phase 22, 28, 30À31, 44, 48 Fisk model 61 maxima 27 freeze-in temperature 53 minima 27 Hale cycle 70 period 22 ionization state 257, 262, 267 Solar and Heliospheric Observatory see kappa function 49 SOHO) magnetic energy density 84 solar dynamo 125, 131 momentum flux density 46 Babcock–Leighton 265 morphology 44 poloidal 125 north–south asymmetry 43, 70 toroidal 125 Parker model 41, 81, 253 solar magnetic field 21, 264 pickup ions 258, 260 dipole 25, 32, 96, 125, 130, 254 ram pressure 81 dynamo 125 reconnection events 69 Hale cycle 125 shell distribution 50 neutral line 33À34 solar breeze 41 solar corpuscular radiation 41 north–south asymmetry 37 super-radial expansion 44, 86 polar field strength 30, 265 turbulence 51 quadrupole 36 Solar, Anomalous, and Magnetospheric reversals 25, 30, 33, 36, 128, 231, 265 Particle Explorer (SAMPEX 217 super-radial expansion 112 Solrad mission 256 tilt 95À96, 109, 209, 254 Source Surface Neutral Line (SSNL) 98 tilted dipole 31, 34, 112 South African Research Foundation unipolar regions 133, 254 (NRF) 239 solar rotation S/B (sector boundary) 82 differential 125 STEREO (Solar Terrestrial Relations differential rotation 112, 116 Observatory) 1, 257 solar wind 41, 254 sunspot number (SSN) 137 abundance 257 SWICS (Solar Wind Ion Composition alpha particles 42 Spectrometer) 43, 86 anisotropy 42 SWOOPS 37, 45, 61, 163 bimodality 60 CIR 62 termination shock (TS) 274 composition 42, 49, 257, 262, 267 standoff distance 46 abundance ratio 58 TGO (The Great Observatory) 251 charge state 53 TRACE (Transition Region And Coronal isotopes 53 Explorer) 21, 262 neon 60 transport equation 169, 203, 207 SWICS 53 adiabatic changes 204, 259 variability 60 convection 204, 259 distribution function 49 cross-field diffusion 180 heavy ions 51 diffusion 259 power law 50 diffusion tensor 207À208 suprathermal tail 50 gradient and curvature drifts 205, 259 dynamic pressure 263 HCS 208, 210 energy density 81, 84 tilt 208 286 Index transport equation (cont.) VELA 17 numerical solution 213 Voyager missions 1, 10À12, 29, 197, 199, size and shape of heliosphere 211 211, 251, 255, 274 Waldmeier effect 24 ULECA 42 Wilcox Solar Observatory 25, 30, 265 ULYSSES 239 WIND mission 1, 21, 71, 200 Printing: Mercedes-Druck, Berlin Binding: Stein + Lehmann, Berlin.
Recommended publications
  • The Interstellar Transport of Galactic Cosmic Rays
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 5-24-2012 The nI terstellar Transport of Galactic Cosmic Rays Kelly Lave Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lave, Kelly, "The nI terstellar Transport of Galactic Cosmic Rays" (2012). All Theses and Dissertations (ETDs). 707. https://openscholarship.wustl.edu/etd/707 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Physics Dissertation Examination Committee: Martin H. Israel, Chair W. Robert Binns James H. Buckley Ramanath Cowsik Bruce Fegley Jr. Henric Krawczynski Douglas A. Wiens The Interstellar Transport of Galactic Cosmic Rays by Kelly A. Lave A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2012 Saint Louis, Missouri c Copyright 2012 by Kelly A. Lave Abstract Using the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Com- position Explorer (ACE) spacecraft, new and improved high-precision measurements of the elemental composition and energy spectra of galactic cosmic rays with energies from ∼50-550 MeV/nucleon and nuclear charge 5≤Z≤28 are reported here. These results cover observations during two solar minimum periods of the solar cycle, the most recent of which exhibited very low levels of solar activity and the highest galactic cosmic-ray intensities of the space era.
    [Show full text]
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • In-Flight PSF Calibration of the Nustar Hard X-Ray Optics
    In-flight PSF calibration of the NuSTAR hard X-ray optics Hongjun Ana, Kristin K. Madsenb, Niels J. Westergaardc, Steven E. Boggsd, Finn E. Christensenc, William W. Craigd,e, Charles J. Haileyf, Fiona A. Harrisonb, Daniel K. Sterng, William W. Zhangh aDepartment of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada; bCahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA; cDTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Denmark; dSpace Sciences Laboratory, University of California, Berkeley, CA 94720, USA; eLawrence Livermore National Laboratory, Livermore, CA 94550, USA; fColumbia Astrophysics Laboratory, Columbia University, New York NY 10027, USA; gJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; hGoddard Space Flight Center, Greenbelt, MD 20771, USA ABSTRACT We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is ∼<3% for extraction ′′ apertures of R ∼> 60 with no significant energy dependence.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA Technical Memorandum 85094 SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY (NASA-^'M-85094) SOLAR RADIO BUFST AND IN N83-35989 SITU DETERMINATION OF INTEFPIAKETARY ELECTRON DENSITY SNASA) 26 p EC A03/MF A01 CSCL 03B Unclas G3/9.3 492134 J. L. Bougeret, J. H. King and R. Schwenn OCT Y'183 RECEIVED NASA Sri FACIUTY ACCESS DEPT. September 1883 I 3 National Aeronautics and Space Administration Goddard Spne Flight Center Greenbelt, Maryland 20771 k it R ^ f A SOLAR RADIO BURST AND IN SITU DETERMINATION OF INTERPLANETARY ELECTRON DENSITY J.-L. Bou eret * J.H. Kinr ^i Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight. Center, Greenbelt, Maryland 20771, U.S.A. and R. Schwenn Max-Planck-Institut fOr Aeronomie, Postfach 20, D-3411 Katlenburg-Lindau, Federal Republic of Germany - 2 - °t i t: ABSTRACT i • We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974-1980 Helioi 1 and 2 in situ i i density observations made in the 0.3-1.0 AU range.
    [Show full text]
  • Novell® Platespin® Recon 3.7.4 User Guide 5.6.4 Printing and Exporting Reports
    www.novell.com/documentation User Guide Novell® PlateSpin® Recon 3.7.4 September 2012 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software.
    [Show full text]
  • Hinode Project and Science Center (Hinode-SC)
    Hinode Project and Science Center (Hinode-SC) Shinsuke Imada (Nagoya Univ., ISEE) Characteristics of the Advanced Telescopes | Hinode Science Center at NAOJ 2019/10/13 22(30 For Researchers 日本語 シェア Tweet “Hinode” Unveils To do research Information Gallery For Researchers the Mysteries of the Sun using Hinode data TOP "Hinode" Unveils the Mysteries of the Sun Characteristics of the Advanced Telescopes Solar Observing Satellite "Hinode" (SOLAR-B) | Hinode Science Center at NAOJ 2019/10/13 22(29 "Hinode" Unveils Characteristics of the Advanced Telescopes the Mysteries of the For Researchers 日本語 Sun Tweet シェア Overview of “Hinode” “Hinode” Unveils To do research Characteristics of the Advanced Telescopes Solar Observing Information Gallery For Researchers Satellite "Hinode" the Mysteries of the Sun using Hinode data (SOLAR-B) The Sun's atmosphere is comprised of layers. The layers beneath the surface (photosphere) cannot be TOP "Hinode" UnveilsSolar the Mysteries of the Sun ObservingSolar Observing Satellite "Hinode" (SOLAR-B) Satelliteseen “ directly,Hinode but the upper layers ”above (SOLAR the photosphere each emit- differentB) wavelengths of lights. So, About the "Hinode" Project you can see each layer by changing the observing wavelength. By loading three telescopes observing in "Hinode" Unveils Solar Observing Satellite "Hinode" (SOLAR-B) different wavelengththe Mysteries ranges, of the Hinode can simultaneously observe from the photosphere to the corona (upper atmosphere).Sun Characteristics of the Advanced Telescopes Overview of “Hinode”
    [Show full text]
  • Nustar Observatory Guide
    NuSTAR Guest Observer Program NuSTAR Observatory Guide Version 3.2 (June 2016) NuSTAR Science Operations Center, California Institute of Technology, Pasadena, CA NASA Goddard Spaceflight Center, Greenbelt, MD nustar.caltech.edu heasarc.gsfc.nasa.gov/docs/nustar/index.html i Revision History Revision Date Editor Comments D1,2,3 2014-08-01 NuSTAR SOC Initial draft 1.0 2014-08-15 NuSTAR GOF Release for AO-1 Addition of more information about CZT 2.0 2014-10-30 NuSTAR SOC detectors in section 3. 3.0 2015-09-24 NuSTAR SOC Update to section 4 for release of AO-2 Update for NuSTARDAS v1.6.0 release 3.1 2016-05-10 NuSTAR SOC (nusplitsc, Section 5) 3.2 2016-06-15 NuSTAR SOC Adjustment to section 9 ii Table of Contents Revision History ......................................................................................................................................................... ii 1. INTRODUCTION ................................................................................................................................................... 1 1.1 NuSTAR Program Organization ..................................................................................................................................................................................... 1 2. The NuSTAR observatory .................................................................................................................................... 2 2.1 NuSTAR Performance ........................................................................................................................................................................................................
    [Show full text]
  • Building the Coolest X-Ray Satellite
    National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1
    [Show full text]
  • Co-Aligned IRIS, SDO and Hinode Data Cubes Release 1.0
    Co-aligned IRIS, SDO and Hinode data cubes Release 1.0 Milan Gošic´ Feb 26, 2020 CONTENTS 1 Introduction 1 1.1 About this Guide.............................................1 1.2 Synopsis of the IRIS, Hinode and SDO missions............................1 1.3 Hinode and SDO data cubes co-aligned with IRIS observations....................2 2 Finding and downloading IRIS-SDO-Hinode co-aligned data cubes5 2.1 Using the IRIS Webpage (HCR).....................................5 2.2 Using SSWIDL..............................................5 3 Reading and browsing IRIS-SDO-Hinode co-aligned data cubes 11 3.1 Reading level 2 co-aligned SDO and Hinode datasets.......................... 11 3.2 Browsing co-aligned SDO and Hinode data cubes with CRISPEX................... 13 i ii CHAPTER ONE INTRODUCTION 1.1 About this Guide The purpose of this guide is to provide detailed instructions on how users can find, download, browse, and analyze co-aligned level 2 data obtained with The Interface Region Imaging Spectrograph (IRIS), the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), and Hinode/SOT level 2 data. The IRIS team at the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) created new data cubes consisting of the Hinode/SOT and SDO/AIA images co-aligned with the simultaneous IRIS observations. These datasets all have the same IRIS level 2 FITS format, therefore can be accessed and examined using the IRIS SolarSoft software. In this guide, we provide step by step instructions how to access, read, and visualize these newly created co-aligned data cubes. In particular, we describe: • How to find data using SolarSoft IDL routines; • How to acquire data sets using either SolarSoft or Heliophysics Coverage Registry (HCR); • How to read data and visualize them using SolarSoft routines or Crisp Spectral Explorer (CRISPEX).
    [Show full text]
  • Radial Variation of the Interplanetary Magnetic Field Between 0.3 AU and 1.0 AU
    |00000575|| J. Geophys. 42, 591 - 598, 1977 Journal of Geophysics Radial Variation of the Interplanetary Magnetic Field between 0.3 AU and 1.0 AU Observations by the Helios-I Spacecraft G. Musmann, F.M. Neubauer and E. Lammers Institut for Geophysik and Meteorologie, Technische Universitiit Braunschweig, Mendelssohnstr. lA, D-3300 Braunschweig, Federal Republic of Germany Abstract. We have investigated the radial dependence of the radial and azimuthal components and the magnitude of the interplanetary magnetic field obtained by the Technical University of Braunschweig magnetometer experiment on-board of Helios-1 from December 10, 1974 to first perihelion on March 15, 1975. Absolute values of daily averages of each quantity have been employed. The regression analysis based on power laws leads to 2.55 y x r- 2 · 0 , 2.26 y x r- i.o and F = 5.53 y x r- i. 6 with standard deviations of 2.5 y, 2.0 y and 3.2 y for the radial and azimuthal components and magnitude, respectively. Here r is the radial distance from the sun in astronomical units. The results are compared with results obtained for Mariners 4, 5 and 10 and Pioneers 6 and 10. The differences are probably due to different epochs in the solar cycle and the different statistical techniques used. Key words: Interplanetary magnetic field - Helios-1 results. Introduction The study of the vanat10n of the components and magnitude of the in­ terplanetary magnetic field with heliocentric distance is very intersting at the present time. The mission of Mariner 10 to the inner solar system to a heliocentric distance of 0.46 AU and the missions of Pioneer 10 and Pioneer 11 to the outer solar system to heliocentric distances beyond 5 AU have provided new data over a wide range of heliocentric distance.
    [Show full text]
  • Development of 60Μm Pitch Cdte Double-Sided Strip Detector for FOXSI-3 Rocket Experiment
    Development of 60µm pitch CdTe double-sided strip detector for FOXSI-3 rocket experiment Kento Furukawa(U-Tokyo, ISAS/JAXA) Shin'nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe(ISAS/JAXA), Koichi Hagino(Tokyo University of Science), Shin'ichiro Takeda(OIST), P.S. Athiray, Lindsay Glesener, Sophie Musset, Juliana Vievering (U. of Minnesota), Juan Camilo Buitrago Casas , Säm Krucker (SSL/UCB), and Steven Christe (NASA/GSFC) 1 2 CdTe semiconductor and diode device Cadmium Telluride semiconductor : • High density • Large atomic number • High efficiency Issue : small µτ product especially for holes 260eV(FWHM) • Uniform & thin device @6.4keV 1400V,-40℃ • Schottky Diode (Takahashi et al. 1998 ) High bias voltage full charge collection + high energy resolution Takahashi et al. (2005) 3 Application of CdTe Diode Double-sided Strip Detector Watanabe et al. 2009 Anode(Pt): Ohmic contact Cathode(Al): Schottky contact Astrophysical Application • Hard X-ray Imager(HXI) onboard Hitomi(ASTRO-H) satellite • FOXSI rocket mission Medical Application • Small animal SPECT system (OIST/JAXA) 4 Hard X-ray study of the Sun Observation Target : the Sun Corona and flare Scientific Aim • Coronal Heating (thermal emission) • Particle Acceleration (non-thermal emission ) →Sensitive Hard X-ray imaging and spectral observation is the key especially for small scale flares study Soft X-ray image by Hinode (micro and nano) (NAOJ/JAXA) So far only Indirect Imaging e.g. RHESSI spacecraft (Rotational Modulation collimator) No direct imaging in hard X-ray band for solar mission 5 FOXSI rocket mission FOXSI experiment (UCB/SSL, NASA, UMN, ISAS/JAXA) Indirect Direct Imaging Spectroscopy with Focusing Optics in Hard X-ray Hard X-ray telescopes + CdTe focal plane detectors FOXSI’s hard X-ray telescope clearly identified a micro-flare with high S/N ratio Direct Telescope Angular resolution : 5 arcsec (FWHM) Focal plane detector 50µm on focal plane Krucker et al.
    [Show full text]