University of Iowa Instruments in Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Wide-Field Infrared Survey Explorer Launch Press
PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington -
Asa R-/ 130090
rl),,; ASA R-/130090 The University of Texas at Dallas Final Technical Report NASA Contract NAS 5-9075 on Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle by R. A. R. Palmeira and F. R. Allum The University of Texas at Dallas Dallas, Texas This report was prepared for submission to NASA/Goddard Space Flight Center in partial fulfillment of the terms of the Contract NAS 5-9075. October 1972 (NASA-CR-130090 ) MEASUREMENT OF THE DEGREE N72-3376 OF ANISOTROPY OF THE COSMIC RADIATION USING 8 THE IMP SPACE VEHICLE Final Technical Report R.A.R. Palmeira, et al (Texas Unclas Univ.) Oct. 1972 31 p CSCL 03B G3/29 45262 The University of Texas at Dallas Final Technical Report on "Measurement of the Degree of Anisotropy of the Cosmic Radiation Using the IMP Space Vehicle" NASA Contract NAS 5-9075 by R.A.R. Palmeira and F. R. Allum The University of Texas at Dallas, Dallas, Texas INTRODUCTION This report describes the detector and data reduction techniques used in connection with the UTD cosmic-ray experiments designed for and flown on board the Explorer 34 and 41 satellites. It is intended to supplement and summarize the more detailed information supplied during the course of the program, including but not restricted to the information contained in the contractually required Monthly Technical Reports submitted throughout the duration of the program. This final technical report is divided into three categories: i) a brief history of the UTD program development; ii) a description of the particle detectors and the methods of data analysis; and iii) present status of data processing. -
Cluster-C1 Observations on the Geometrical Structure of Linear Magnetic Holes in the Solar Wind at 1 AU
Ann. Geophys., 28, 1695–1702, 2010 www.ann-geophys.net/28/1695/2010/ Annales doi:10.5194/angeo-28-1695-2010 Geophysicae © Author(s) 2010. CC Attribution 3.0 License. Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU T. Xiao1,2, Q. Q. Shi1,3, T. L. Zhang4, S. Y. Fu3, L. Li1, Q. G. Zong3, Z. Y. Pu3, L. Xie3, W. J. Sun1, Z. X. Liu2, E. Lucek5, and H. Reme6,7 1School of Space Science and Physics, Shandong University at Weihai, Weihai, China 2State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China 3Institute of Space Physics and Applied Technology, Peking University, Beijing, China 4Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria 5Space and Atmospheric Physics Group, Blackett Laboratory, Imperial College, London, UK 6CESR, UPS, University of Toulouse, Toulouse, France 7UMR 5187, CNRS, Toulouse, France Received: 8 October 2009 – Revised: 1 June 2010 – Accepted: 16 July 2010 – Published: 20 September 2010 Abstract. Interplanetary linear magnetic holes (LMHs) are 1 Introduction structures in which the magnetic field magnitude decreases with little change in the field direction. They are a 10– Magnetic holes (MHs), also called magnetic decreases 30% subset of all interplanetary magnetic holes (MHs). Us- (MDs), are structures in interplanetary space with significant ing magnetic field and plasma measurements obtained by decreases in the magnetic field magnitude (e.g., Turner et Cluster-C1, we surveyed the LMHs in the solar wind at 1 AU. al., 1977; Winterhalter et al., 1994; Tsurutani and Ho, 1999; In total 567 interplanetary LMHs are identified from the Stevens and Kasper, 2007; Vasquez et al., 2007; Tsurutani magnetic field data when Cluster-C1 was in the solar wind et al., 2009). -
Proceedings of Spie
PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR Brian W. Grefenstette, Varun Bhalerao, W. Rick Cook, Fiona A. Harrison, Takao Kitaguchi, et al. Brian W. Grefenstette, Varun Bhalerao, W. Rick Cook, Fiona A. Harrison, Takao Kitaguchi, Kristin K. Madsen, Peter H. Mao, Hiromasa Miyasaka, Vikram Rana, "Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR," Proc. SPIE 10392, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIX, 1039207 (29 August 2017); doi: 10.1117/12.2271365 Event: SPIE Optical Engineering + Applications, 2017, San Diego, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/5/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Ground Calibration of the Spatial Response and Quantum Efficiency of the CdZnTe Hard X-ray Detectors for NuSTAR Brian W. Grefenstette1, Varun Bhalerao2, W. Rick Cook1, Fiona A. Harrison1, Takao Kitaguchi3, Kristin K. Madsen1, Peter H. Mao1, Hiromasa Miyasaka1, Vikram Rana1 1Space Radiation Lab, California Institute of Technology (Caltech), Pasadena, CA 2Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, India 3RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ABSTRACT Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Tele- scope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≈ 605 µm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. -
Chandra-Hetgs Characterization of an Outflowing Wind in the Accreting Millisecond Pulsar Igr J17591−2342
Draft version February 27, 2019 Typeset using LATEX twocolumn style in AASTeX61 CHANDRA-HETGS CHARACTERIZATION OF AN OUTFLOWING WIND IN THE ACCRETING MILLISECOND PULSAR IGR J17591−2342 Michael A. Nowak,1 Adamantia Paizis,2 Gaurava Kumar Jaisawal,3 Jer´ ome^ Chenevez,3 Sylvain Chaty,4 Francis Fortin,4 Jer´ ome^ Rodriguez,4 andJ orn¨ Wilms5 1Physics Dept., CB 1105, Washington University, One Brookings Drive, St. Louis, MO 63130-4899 2Istituto Nazionale di Astrofisica, INAF-IASF, Via Alfonso Corti 12, I-20133 Milano, Italy 3National Space Institute, Technical University of Denmark, Elektrovej 327-328, DK-2800 Lyngby, Denmark 4AIM, CEA, CNRS, Universit´eParis-Saclay, Universit´eParis-Diderot, Sorbonne Paris Cit´e,F-91191 Gif sur Yvette, France 5Dr. Karl Remeis-Observatory & ECAP, University of Erlangen-Nuremberg, Sternwartstr. 7, 96049 Bamberg, Germany (Received 2019 January; Accepted 2019 February) Submitted to ApJ ABSTRACT IGR J17591−2342 is an accreting millisecond X-ray pulsar discovered in 2018 August in scans of the Galactic bulge and center by the INTEGRAL X-ray and gamma-ray observatory. It exhibited an unusual outburst profile with multiple peaks in the X-ray, as observed by several X-ray satellites over three months. Here we present observations of this source performed in the X-ray/gamma-ray and near infrared domains, and focus on a simultaneous observation performed with the Chandra-High Energy Transmission Gratings Spectrometer (HETGS) and the Neutron Star Interior Composition Explorer (NICER). HETGS provides high resolution spectra of the Si-edge region, which yield clues as to the source's distance and reveal evidence (at 99.999% significance) of an outflow with a velocity of 2 800 km s−1. -
Final Release from the Extended Baryon
Draft version August 19, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE SIXTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: FINAL RELEASE FROM THE EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY, AND FIRST RELEASE FROM APOGEE-2S V´ıctor Silva Aguirre1, Romina Ahumada2, Carlos Allende Prieto3,4, Andres´ Almeida5, Friedrich Anders6,7, Scott F. Anderson8, Brett H. Andrews9, Borja Anguiano10, Riccardo Arcodia11, Marie Aubert12, Santiago Avila13,14, Vladimir Avila-Reese15, Christophe Balland16, Kat Barger17, Sarbani Basu18, Julian Bautista19, Rachael L. Beaton20, Timothy C. Beers21, Chad F. Bender22, Mariangela Bernardi23, Matthew Bershady24,25, Florian Beutler19, Dmitry Bizyaev26, Michael R. Blanton27,Med´ eric´ Boquien28, Jura Borissova29,30, Jo Bovy31,32, W.N. Brandt33,34,35, Jonathan Brinkmann26, Joel R. Brownstein36, Kevin Bundy37, Martin Bureau38, Adam Burgasser39, Mariana Cano-D´ıaz15, Raffaella Capasso40,41,42, Ricardo Carrera43, Solene` Chabanier44, Brian Cherinka45, Cristina Chiappini6, Peter Doohyun Choi46, Haeun Chung47, Nicolas Clerc48, Damien Coffey11, Julia M. Comerford49, Johan Comparat11, Luiz da Costa50,51, Marie-Claude Cousinou12, Kevin Covey52, Jeffrey D. Crane20, Katia Cunha51,22, Gabriele da Silva Ilha53,50, Yu Sophia Dai54, Sanna B. Damsted55, Danny Horta Darrington56, James W. Davidson Jr.10, Kyle Dawson36, Nikhil De57,17, Axel de la Macorra58, Nathan De Lee59, Alice Deconto Machado53,50, Sylvain de la Torre60, Flavia Dell'Agli3,4, Helion´ du Mas des Bourboux36, Aleksandar M. Diamond-Stanic61, Sean Dillon62,63, John Donor17, Niv Drory64, Chris Duckworth65, Tom Dwelly11, Garrett Ebelke10, Arthur Davis Eigenbrot24, Yvonne P. Elsworth66, Mike Eracleous33,34, Ghazaleh Erfanianfar11, Stephanie Escoffier12, Xiaohui Fan22, Emily Farr8, Jose´ G. Fernandez-Trincado´ 67,68, Diane Feuillet69, Alexis Finoguenov55, Patricia Fofie62,70, Amelia Fraser-McKelvie71, Peter M. -
Ionospheric Cusp Flows Pulsed by Solar Wind Alfvén Waves
c Annales Geophysicae (2002) 20: 161–174 European Geophysical Society 2002 Annales Geophysicae Ionospheric cusp flows pulsed by solar wind Alfven´ waves P. Prikryl1, G. Provan2, K. A. McWilliams2, and T. K. Yeoman2 1Communications Research Centre, Ottawa, Ontario K2H 8S2, Canada 2Department of Physics and Astronomy, University of Leicester, UK Received: 7 February 2001 – Revised: 24 August 2001 – Accepted: 10 September 2001 Abstract. Pulsed ionospheric flows (PIFs) in the cusp foot- bow shock were the source of magnetopause surface waves print have been observed by the SuperDARN radars with inducing reconnection. periods between a few minutes and several tens of minutes. Key words. Interplanetary physics (MHD waves and PIFs are believed to be a consequence of the interplanetary turbulence) – Magnetospheric physics (magnetosphere- magnetic field (IMF) reconnection with the magnetospheric ionosphere interactions; solar wind-magnetosphere interac- magnetic field on the dayside magnetopause, ionospheric tions) signatures of flux transfer events (FTEs). The quasiperiodic PIFs are correlated with Alfvenic´ fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfven´ waves coupling to the day- 1 Introduction side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfven´ wave electric field mod- Ionospheric dynamics near the cusp footprint attest to pro- ulates the reconnection rate as evidenced by the radar obser- cesses at the dayside magnetopause and in particular, to vations of the ionospheric cusp flows. The arrival of the IMF pulsed magnetic reconnection (Cowley et al., 1991; Lock- southward turning at the magnetopause is determined from wood et al., 1993). -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
Acceleration of Particles to High Energies in Earth's Radiation Belts
Space Sci Rev (2012) 173:103–131 DOI 10.1007/s11214-012-9941-x Acceleration of Particles to High Energies in Earth’s Radiation Belts R.M. Millan · D.N. Baker Received: 16 April 2012 / Accepted: 30 September 2012 / Published online: 25 October 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Discovered in 1958, Earth’s radiation belts persist in being mysterious and un- predictable. This highly dynamic region of near-Earth space provides an important natural laboratory for studying the physics of particle acceleration. Despite the proximity of the ra- diation belts to Earth, many questions remain about the mechanisms responsible for rapidly energizing particles to relativistic energies there. The importance of understanding the ra- diation belts continues to grow as society becomes increasingly dependent on spacecraft for navigation, weather forecasting, and more. We review the historical underpinning and observational basis for our current understanding of particle acceleration in the radiation belts. Keywords Particle acceleration · Radiation belts · Magnetosphere 1 Introduction 1.1 Motivation Shortly after the discovery of Earth’s radiation belts, the suggestion was put forward that processes occurring locally, in near-Earth space, might be responsible for the high energy particles observed there. Efforts were also carried out to search for an external source that could inject multi-MeV electrons into Earth’s inner magnetosphere where they could then be trapped by the magnetic field. Energetic electrons are in fact observed in interplanetary space, originating at both Jupiter and the sun. However, the electron intensity in Earth’s radiation belts is not correlated with the interplanetary intensity, and a significant external R.M. -
A Pictorial History of Rockets
he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here. -
FROM the SUN to the STARS Narration & Sync Transcript FINAL
FROM THE SUN TO THE STARS narration & sync transcript FINAL page 1 of 35 FROM THE SUN TO THE STARS Transcript including narration (in caps) and sync dialog (lower case.) Existing “open” captions (lower thirds and web icons and language sub-titles noted.) Underwriter announce: “FROM THE SUN TO THE STARS” IS MADE POSSIBLE, IN PART, BY NASA, THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. (Sputnik beep) Narration: IN JUST FIFTY YEARS, WE’VE GONE FROM ONE SIMPLE SATELLITE CIRCLING EARTH… …TO MANY THOUSANDS OF OBJECTS ORBITING OUR PLANET. THE FIRST DISCOVERY OF THE SPACE AGE WAS THAT BELTS OF RADIATION SURROUND US. NOW WE KNOW THAT FORCES ORIGINATING AT THE SUN EXTEND OUT ALMOST EIGHT BILLION MILES, TO THE VERY EDGE OF OUR SOLAR SYSTEM. (Music swells) …AND THAT OUR HIGH-TECH CIVILIZATION IS MIGHTILY IMPACTED BY “SPACE WEATHER” NICKY FOX: (no lower third here) We live in the atmosphere of the sun so when the Sun sneezes the Earth catches a cold. IT WAS THE “INTERNATIONAL GEOPHYSICAL YEAR” OF 1957 THAT LAUNCHED THE SPACE AGE. TWO THOUSAND SEVEN AND EIGHT HAVE BEEN WHAT’S KNOWN AS THE “INTERNATIONAL HELIOPHYSICAL YEAR” OR “IHY.” IT’S A TIME TO PLAN NEW SPACECRAFT… …AND TO RECRUIT A NEW GENERATION OF TEACHERS, STUDENTS, AND SCIENTISTS IN NATIONS ACROSS THE GLOBE TO WORK IN SPACE PHYSICS. (Segment titles – text over black – fly in rapidly) FROM THE SUN TO THE STARS narration & sync transcript FINAL page 2 of 35 EACH ACT IN OUR PROGRAM STANDS ALONE… BUT TOGETHER THEY’RE A COMPREHENSIVE OVERVIEW OF IHY… AND WHEN YOU SEE THIS ICON, THAT’S A SIGNAL THERE’S LOTS MORE INFORMATION ONLINE.