Acceleration of Particles to High Energies in Earth's Radiation Belts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Nonstorm Time Enhancement of Relativistic Electrons in the Outer Radiation Belt Quintin Schiller,1,2 Xinlin Li,1,2 Lauren Blum,1,2 Weichao Tu,3 Drew L
GEOPHYSICAL RESEARCH LETTERS, VOL. 41, 7–12, doi:10.1002/2013GL058485, 2014 A nonstorm time enhancement of relativistic electrons in the outer radiation belt Quintin Schiller,1,2 Xinlin Li,1,2 Lauren Blum,1,2 Weichao Tu,3 Drew L. Turner,4 and J. B. Blake5 Received 29 October 2013; revised 27 November 2013; accepted 28 November 2013; published 15 January 2014. [1] Despite the lack of a geomagnetic storm (based on the [3] Acceleration mechanisms, which replenish the relativ- Dst index), relativistic electron fluxes were enhanced over istic electron content, can be classified into two broad catego- 2.5 orders of magnitude in the outer radiation belt in 13 h ries: radial transport and internal acceleration. Radial on 13–14 January 2013. The unusual enhancement was transport mechanisms can again be broadly classified into observed by Magnetic Electron Ion Spectrometer (MagEIS), two subcategories: radial diffusion and sudden injection, onboard the Van Allen Probes; Relativistic Electron and both of which violate the third adiabatic invariant. Radial Proton Telescope Integrated Little Experiment, onboard transport requires an electron source population at high L, the Colorado Student Space Weather Experiment; and such as the plasma sheet in the tail of the magnetosphere Solid State Telescope, onboard Time History of Events [e.g., Ingraham et al., 2001]. Radial transport by diffusion and Macroscale Interactions during Substorms (THEMIS). in the third adiabatic invariant is a result of incoherent scatter- Analyses of MagEIS phase space density (PSD) profiles ing by ULF waves in the Pc4–5 band [e.g., Tu et al., 2012]. show a positive outward radial gradient from 4 < L < 5.5. -
University of Iowa Instruments in Space
University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar. -
Emission of Cosmic Rays from Jupiter. Magnetospheres As Possible Sources of Cosmic Rays
EPJ manuscript No. (will be inserted by the editor) Emission of cosmic rays from Jupiter. Magnetospheres as possible Sources of Cosmic Rays G.Pizzella Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati Received: date / Revised version: date Abstract. Measurements made recently with the PAMELA satellite have shown with good evidence that a fraction of the cosmic rays detected on Earth comes from Jupiter. This result draws attention to the idea that magnetospheres of astrophysical objects could contribute to the sources of cosmic rays. We discuss this conjecture on the basis of Earth installed instrumentation and of the measurements made with PAMELA. The experiments strongly favor the validity of the conjecture. In particular the PAMELA data show that the proton fluxes are larger when the Earth orbit intersects the lines of the interplanetary magnetic field connecting Jupiter with Earth. This effect shows up with more than ten standard deviations, difficult to explain without the idea that part of the cosmic ray protons comes directly from the Jupiter magnetosphere. PACS. 94.30 Magnetosphere { 98.40.S Cosmic Rays 1 Introduction 2 The trapped radiation An unexpected discovery was the Van Allen belt in 1958. It has been recently published a paper [1] showing good Although in earlier times Kristian Birkeland, Carl St¨ormer, evidence that a small but not negligible fraction of cos- and Nicholas Christofilos considered the possibility that mic rays detected by the Earth satellite PAMELA1 comes fluxes of charged particles could dwell in the magnetic field from the planet Jupiter. The suggestion was that higher surrounding the Earth, nobody was expecting so large energy particles leak out from the Jupiter trapped particle density of charged particle population that formed a sort region and then are ejected into space following the inter- of permanent belt surrounding the Earth. -
IONIZING RADIATION EXPOSURE Grade Level 11–12
IONIZING RADIATION EXPOSURE Grade Level 11–12 Instructional Objectives Key Topic Students will Atomic physics • practice and review atomic physics concepts and equations; Degree of Difficulty • apply Planck’s constant; Moderate • determine the deBroglie wavelength of a proton; and analyze the frequency of photons. • Teacher Prep Time 10 minutes Degree of Difficulty For the average student in AP Physics B, this problem is moderately difficult Class Time Required due to the limited amount of time available in AP Physics B to the study of 25–35 minutes atomic and nuclear physics. Students should be provided with the mass of a proton, speed of light, and the necessary equations located on the AP Technology physics equation sheet. - TI-Nspire™ Learning Handhelds For part C, students should understand the relationship between frequency - TI-Nspire document: and energy of electromagnetic waves, and the relationship between the Ionizing_Radiation.tns speed of these waves, both in wavelength and frequency. Materials Class Time Required AP Physics equation sheet This problem requires 25–35 minutes. -------------------------------- • Introduction: 10 minutes o Read and discuss the background section with the class before Learning Objectives for students work on the problem. AP Physics Atomic and Nuclear Student Work Time: 10–15 minutes • Physics: • Post Discussion: 5–10 minutes - Atomic Physics and Quantum Effects Background NSES This problem is part of a series of problems that apply Math and Science Standards Science @ Work in NASA’s research facilities. - Physical Science The International Space Station (ISS) orbits the Earth at an approximate - Science in Personal and altitude of 407 km (252 mi). At this altitude, astronauts are not as well Social Perspectives protected by the Earth’s atmosphere, and are exposed to higher levels of - History and Nature of space radiation than what is experienced on the Earth’s surface. -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
Particle Dynamics in the Earth's Radiation Belts: Review of Current
INTRODUCTION TO Particle Dynamics in the Earth's Radiation Belts: Review A SPECIAL SECTION of Current Research and Open Questions 10.1029/2019JA026735 J.‐F. Ripoll1, S. G. Claudepierre2,3, A. Y. Ukhorskiy4, C. Colpitts5,X.Li6, J. F. Fennell2, and 7 Special Section: C. Crabtree Particle Dynamics in the Earth's Radiation Belts 1CEA, DAM, DIF, Arpajon, France, 2The Aerospace Corporation, El Segundo, CA, USA, 3Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA, 4The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, 5School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA, Key Points: 6 7 • We review and discuss current LASP, University of Colorado Boulder, Boulder, CO, USA, Naval Research Laboratory, Washington, DC, USA research and open questions relative to Earth's radiation belts • Aspects of modern radiation belt Abstract The past decade transformed our observational understanding of energetic particle processes in research concern particle near‐Earth space. An unprecedented suite of observational systems was in operation including the Van acceleration and transport, particle loss, and the role of nonlinear Allen Probes, Arase, Magnetospheric Multiscale, Time History of Events and Macroscale Interactions during processes Substorms, Cluster, GPS, GOES, and Los Alamos National Laboratory‐GEO magnetospheric missions. • We also discuss new radiation belt They were supported by conjugate low‐altitude measurements on spacecraft, balloons, and ground‐based modeling capabilities, the fi quantification of model arrays. Together, these signi cantly improved our ability to determine and quantify the mechanisms that uncertainties, and laboratory plasma control the buildup and subsequent variability of energetic particle intensities in the inner magnetosphere. -
<> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A -
Index of Astronomia Nova
Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K. -
Recent Advances in Our Understanding of the Earth's
Recent advances in our understanding of the Earth’s Radiation Belts Shrikanth Kanekal Daniel Baker David Sibeck Heliophysics Division Laboratory for Atmospheric and Space Physics Heliophysics Division NASA Goddard SpaceFlight Center University of Colorado, Boulder NASA Goddard SpaceFlight Center Greenbelt, USA Boulder, USA Greenbelt, USA [email protected] [email protected] [email protected] Abstract—The Earth’s radiation belts were discovered by belt [5]. Although there have been earlier missions that studied James van Allen more than fifty years ago and are a home to a the radiation belts NASA’s flagship mission, the Radiation Belt plethora of fascinating processes ranging from low energy cold Storm Probes (RBSP) is one of the most advance missions plasma to relativistic and ultra-relativistic particle populations. The traditional morphological picture of the radiation belts is to probe radiation belt dynamics. The mission carryies a that of an outer belt comprising mostly of electrons and an comprehensive suite of sensors on each of the two identically inner belt comprising mostly of protons with a so-called slot instrumented spacecraft. RBSP was named Van Allen Probes region separating the two. The inner belt is somewhat stable, soon after launch on August 30, 2012 [6]. The science goal while the outer radiation belt is very dynamical and shows of the mission is to improve our ”fundamental understanding variability in energetic electron populations over a wide range of energies, intensities, and time scales ranging from minutes, days of radiation belt dynamics in a quantitative and predictable and even years. This variability is due to dynamical processes of manner”. -
2010 Mad River Canoe Is a Registered Trademark of Confluence Watersports
he story of Mad River Canoe begins in a patch of ferns, oh so long ago, with friend Rabbit. TNative American legend has it that Rabbit was a great hunter and a bit of a trickster, but most of all Rabbit was confident in his abilities. So confident in fact, that even as Lynx circles the fern, planning his attack, Rabbit is free to enjoy his pipe, secure in his abilities to avoid this mortal enemy. Within every legend, there is truth. And the truth in the legend of Rabbit is that confidence is a powerful asset when backed up by ability. The confidence you share with your Mad River Canoe will be backed up by our ability to produce the finest craft of its kind. We like to think that every Mad River Canoe is crafted from both truth and legend. For legends inspire us toward greatness, yet only through truth can we achieve it. I n n ova t e t h e n. O ur story continues on a picturesque hillside in Vermont, circa: 1971. In his backyard shed, Jim henry, the company founder, began his mission to build a better canoe through innovative thought, design and materials. With confidence in his abilities, he designed and built the first Malacite. he then raced in – and won – the downriver national Championship and the rest, you know. Word spread and demand grew. A tradition of innovation was born. From the beginning, Mad river Canoe explored new designs and experimented with new materials. We were the first to introduce Kevlar™ to the canoe industry and among the pioneers truth & legend to first mold our own royalex canoes. -
Fast Acceleration of “Killer” Electrons and Energetic Ions by Inter- Planetary Shock Stimulated ULF Waves in the Inner Magnetosphere
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Review SPECIAL TOPIC: Space Physics & Space Weather April 2011 Vol.56 No.12: 1188−1201 Geophysics doi: 10.1007/s11434-010-4308-8 Fast acceleration of “killer” electrons and energetic ions by inter- planetary shock stimulated ULF waves in the inner magnetosphere ZONG QiuGang*, WANG YongFu, YUAN ChongJing, YANG Biao, WANG ChenRui & ZHANG XiangYun Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China Received August 30, 2010; accepted November 25, 2010 Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of “killer” electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is consid- ered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to ac- celerate electrons to relativistic energies, is too long to explain our observations. -
2009 Product Catalog the Story of Mad River Canoe Begins in a Patch of Ferns, Oh So Long Ago, with Friend Rabbit
2009 Product Catalog The story of Mad River Canoe begins in a patch of ferns, oh so long ago, with friend Rabbit. Native American legend has it that Rabbit was a great hunter and a bit of a trickster, but most of all Rabbit was confident in his abilities. So confident in fact, that even as Lynx circles the fern, planning his attack, Rabbit is free to enjoy his pipe, secure in his abilities to avoid this mortal enemy. TRUTH & LEGEND Within every legend, there is truth. And the truth in the legend of Rabbit is that confidence is a powerful asset when backed up by ability. The confidence you share with your Mad River Canoe will be backed up by our ability to produce the finest craft of its kind. We like to think that every Mad River Canoe is crafted from both truth and legend. For legends inspire us toward greatness, yet only through truth can we achieve it. Cover Photo: Joshua Compton among the pioneers to first mold our own Royalex® canoes. We now offer a wider variety of hull designs than any other canoe manufacturer and continue to push ourselves and our designs to new levels of performance. Our efforts have been rewarded with competitions won, accolades earned (including 3 “Manufacturer of the Year” awards from Canoe & Kayak magazine) and, most importantly, a growing base of loyal customers. After more than 35 years in this industry, we have never lost sight of our founder’s original mission to build a better canoe. Our devotion to that ideal is not INNOVatE thEN.