Particle Dynamics in the Earth's Radiation Belts: Review of Current

Total Page:16

File Type:pdf, Size:1020Kb

Particle Dynamics in the Earth's Radiation Belts: Review of Current INTRODUCTION TO Particle Dynamics in the Earth's Radiation Belts: Review A SPECIAL SECTION of Current Research and Open Questions 10.1029/2019JA026735 J.‐F. Ripoll1, S. G. Claudepierre2,3, A. Y. Ukhorskiy4, C. Colpitts5,X.Li6, J. F. Fennell2, and 7 Special Section: C. Crabtree Particle Dynamics in the Earth's Radiation Belts 1CEA, DAM, DIF, Arpajon, France, 2The Aerospace Corporation, El Segundo, CA, USA, 3Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA, 4The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, 5School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA, Key Points: 6 7 • We review and discuss current LASP, University of Colorado Boulder, Boulder, CO, USA, Naval Research Laboratory, Washington, DC, USA research and open questions relative to Earth's radiation belts • Aspects of modern radiation belt Abstract The past decade transformed our observational understanding of energetic particle processes in research concern particle near‐Earth space. An unprecedented suite of observational systems was in operation including the Van acceleration and transport, particle loss, and the role of nonlinear Allen Probes, Arase, Magnetospheric Multiscale, Time History of Events and Macroscale Interactions during processes Substorms, Cluster, GPS, GOES, and Los Alamos National Laboratory‐GEO magnetospheric missions. • We also discuss new radiation belt They were supported by conjugate low‐altitude measurements on spacecraft, balloons, and ground‐based modeling capabilities, the fi quantification of model arrays. Together, these signi cantly improved our ability to determine and quantify the mechanisms that uncertainties, and laboratory plasma control the buildup and subsequent variability of energetic particle intensities in the inner magnetosphere. experiments The high‐quality data from National Aeronautics and Space Administration's Van Allen Probes are the most comprehensive in situ measurements ever taken in the near‐Earth space radiation environment. These observations, coupled with recent advances in radiation belt theory and modeling, including dramatic Correspondence to: increases in computational power, have ushered in a new era, perhaps a “golden era,” in radiation belt ‐ J. F. Ripoll, research. We have edited a Journal of Geophysical Research: Space Science Special Collection dedicated to jean‐[email protected] Particle Dynamics in the Earth's Radiation Belts in which we gather the most recent scientific findings and understanding of this important region of geospace. This collection includes the results presented at the Citation: American Geophysical Union Chapman International Conference in Cascais, Portugal (March 2018) and Ripoll, J.‐F., Claudepierre, S. G., Ukhorskiy, A. Y., Colpitts, C., Li, X., many other recent and relevant contributions. The present article introduces and review the context, current Fennell, J., & Crabtree, C. (2020). research, and main questions that motivate modern radiation belt research divided into the following Particle Dynamics in the Earth's topics: (1) particle acceleration and transport, (2) particle loss, (3) the role of nonlinear processes, (4) Radiation Belts: Review of Current fi Research and Open Questions. Journal new radiation belt modeling capabilities and the quanti cation of model uncertainties, and (5) laboratory of Geophysical Research: Space Physics, plasma experiments. 125, e2019JA026735. https://doi.org/ 10.1029/2019JA026735 1. Introduction Received 27 MAR 2019 Accepted 20 NOV 2019 Earth's radiation belts consist of two toroidal belts of energetic charged particles (electrons and ions) sur- Accepted article online 26 DEC 2019 rounding Earth. The outer belt typically lies at geocentric radial distances between 3 and 7 Earth radii (1 Earth radius = 6,370 km) in the equatorial plane and consists primarily of highly energetic (0.1–10 MeV) electrons and high‐energy protons (1–100 keV), though other ion species and lower‐energy particles are also present. The inner belt sits between 1 and 3 Earth radii and contains primarily hundreds of kiloelectron volts electrons along with extremely energetic (e.g., hundreds of megaelectron volts) protons. This description is, however, an idealized representation of a simplified structure. This representation can be valid during quiet geomagnetic times but dynamic/disturbed conditions bring complex dynamic monobelt or multibelt struc- tures (e.g., Baker, Kanekal, Hoxie, Henderson, et al., 2013) forming within the inner magnetosphere below ~7–8 Earth radii. Earth's radiation belt location is also energy dependent. Many competing processes contri- bute to the dynamic formation and depletion of the belts, including radial transport, local wave acceleration, particle loss to the magnetopause, particle precipitation into the atmosphere, and others. These competing energization, loss, and transport mechanisms greatly contribute to generating complex structures far beyond the ideal two‐belt structure. These competing mechanisms typically occur simultaneously (e.g., Baker et al., 2019 in this collection) and are energy dependent; an accurate description of the radiation belts must account for their combined effects. The relative importance of each process is the most fundamental, unan- ©2019. American Geophysical Union. swered question in radiation belt physics. This question cannot be answered fully without the combined All Rights Reserved. effort of, and collaboration between, experimentalists, theorists, and modelers. RIPOLL ET AL. 1of48 Journal of Geophysical Research: Space Physics 10.1029/2019JA026735 The motion of a charged particle in the Earth's magnetic field was first formulated by Störmer (2018) and was subsequently studied by him and several others in connection with auroral phenomena and cosmic rays (Störmer, 2017). The motion and the stability of charged and trapped particles in Earth's magnetic field was then well established by 1960 (e.g., Northrop & Teller, 1960; Dragt, 1965; Fälthammar, 1965) and has provided the theoretical basis for the presence of Earth's radiation belts discovered by pioneering space missions (Van Allen, 1959; Vernov et al., 1959). It was shown that in the approximately dipolar magnetic field of the inner magnetosphere including the Earth's Van Allen radiation belts, charged par- ticles undergo quasiperiodic motion composed of gyro, bounce, and gradient‐curvature drift motions, each associated with an adiabatic invariant. This set of three invariants defines a stable drift shell encir- cling Earth. Subsequent experiments revealed that particle intensities across the belts can vary signifi- cantly with time, which requires violation of one or more of the adiabatic invariants. The theoretical interpretation of the variability of radiation belt intensities was largely inspired by the experiments in particle acceleration by random‐phased electrostatic waves in synchrocyclotron devices and by the subse- quent development of the theory of weak plasma turbulence. It was thus suggested that the adiabatic invariants of trapped particles can be violated by small‐amplitude waves, which resonantly interact with the quasiperiodic particle motion (Balescu, 1960; Lenard, 1960; Vedenov et al., 1961). Since both the den- sity and energy density of radiation belt particles are negligible compared to other plasma populations, their motion does not affect the fields that govern them (with some exceptions, e.g., chorus waves). Thus, it was suggested that the evolution of radiation belt intensities can be described kinetically and sta- tistically as a quasilinear diffusion in the three adiabatic invariants (Northrop & Teller, 1960) under the action of prescribed wave fields, with the diffusion coefficients determined by resonant wave‐particle interactions (e.g., Hess, 1968; Walt, 1970; Schulz & Lanzerotti, 1974). The theoretical framework of quasi- linear diffusion of radiation belt particles, developed within the first decade following the discovery of the belts, has been the backbone of most of the modeling of global variability of radiation belt intensities (see recent reviews, e.g., Hudson et al., 2008, Shprits et al., 2008a, 2008b, Thorne, 2010, and see discus- sion in section 5). We will see many aspects of this approach treated in this JGR Special Collection. In addition, it is now clear that nonlinear effects must also be considered in radiation belt dynamics and this will also be addressed specifically (e.g. section 4). Understanding the variability of the Van Allen radiation belts, to the point of predictability, is one of the great outstanding questions in heliophysics research. In the coupled Sun‐Earth system, solar wind energy is transferred into the radiation belts, leading to charged particle dynamics over a broad range of timescales (e.g., seconds to years). Radiation belt enhancements have wide‐ranging implications for the man‐made technologies that operate in this region of geospace, such as radiation hazards that can affect astronauts, or charged particle spacecraft interactions that can damage satellites (e.g., Lanzerotti, 2017). Therefore, a more complete understanding of the highly variable dynamics of radiation belt particles is an international priority, which has led to many recent missions devoted to exploring the belts. The main current mission is National Aeronautics and Space Administration's (NASA) Van Allen Probes launched in 2012, a two‐space- craft mission devoted to unraveling the mysteries of the dynamics of the
Recommended publications
  • A Nonstorm Time Enhancement of Relativistic Electrons in the Outer Radiation Belt Quintin Schiller,1,2 Xinlin Li,1,2 Lauren Blum,1,2 Weichao Tu,3 Drew L
    GEOPHYSICAL RESEARCH LETTERS, VOL. 41, 7–12, doi:10.1002/2013GL058485, 2014 A nonstorm time enhancement of relativistic electrons in the outer radiation belt Quintin Schiller,1,2 Xinlin Li,1,2 Lauren Blum,1,2 Weichao Tu,3 Drew L. Turner,4 and J. B. Blake5 Received 29 October 2013; revised 27 November 2013; accepted 28 November 2013; published 15 January 2014. [1] Despite the lack of a geomagnetic storm (based on the [3] Acceleration mechanisms, which replenish the relativ- Dst index), relativistic electron fluxes were enhanced over istic electron content, can be classified into two broad catego- 2.5 orders of magnitude in the outer radiation belt in 13 h ries: radial transport and internal acceleration. Radial on 13–14 January 2013. The unusual enhancement was transport mechanisms can again be broadly classified into observed by Magnetic Electron Ion Spectrometer (MagEIS), two subcategories: radial diffusion and sudden injection, onboard the Van Allen Probes; Relativistic Electron and both of which violate the third adiabatic invariant. Radial Proton Telescope Integrated Little Experiment, onboard transport requires an electron source population at high L, the Colorado Student Space Weather Experiment; and such as the plasma sheet in the tail of the magnetosphere Solid State Telescope, onboard Time History of Events [e.g., Ingraham et al., 2001]. Radial transport by diffusion and Macroscale Interactions during Substorms (THEMIS). in the third adiabatic invariant is a result of incoherent scatter- Analyses of MagEIS phase space density (PSD) profiles ing by ULF waves in the Pc4–5 band [e.g., Tu et al., 2012]. show a positive outward radial gradient from 4 < L < 5.5.
    [Show full text]
  • Emission of Cosmic Rays from Jupiter. Magnetospheres As Possible Sources of Cosmic Rays
    EPJ manuscript No. (will be inserted by the editor) Emission of cosmic rays from Jupiter. Magnetospheres as possible Sources of Cosmic Rays G.Pizzella Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati Received: date / Revised version: date Abstract. Measurements made recently with the PAMELA satellite have shown with good evidence that a fraction of the cosmic rays detected on Earth comes from Jupiter. This result draws attention to the idea that magnetospheres of astrophysical objects could contribute to the sources of cosmic rays. We discuss this conjecture on the basis of Earth installed instrumentation and of the measurements made with PAMELA. The experiments strongly favor the validity of the conjecture. In particular the PAMELA data show that the proton fluxes are larger when the Earth orbit intersects the lines of the interplanetary magnetic field connecting Jupiter with Earth. This effect shows up with more than ten standard deviations, difficult to explain without the idea that part of the cosmic ray protons comes directly from the Jupiter magnetosphere. PACS. 94.30 Magnetosphere { 98.40.S Cosmic Rays 1 Introduction 2 The trapped radiation An unexpected discovery was the Van Allen belt in 1958. It has been recently published a paper [1] showing good Although in earlier times Kristian Birkeland, Carl St¨ormer, evidence that a small but not negligible fraction of cos- and Nicholas Christofilos considered the possibility that mic rays detected by the Earth satellite PAMELA1 comes fluxes of charged particles could dwell in the magnetic field from the planet Jupiter. The suggestion was that higher surrounding the Earth, nobody was expecting so large energy particles leak out from the Jupiter trapped particle density of charged particle population that formed a sort region and then are ejected into space following the inter- of permanent belt surrounding the Earth.
    [Show full text]
  • IONIZING RADIATION EXPOSURE Grade Level 11–12
    IONIZING RADIATION EXPOSURE Grade Level 11–12 Instructional Objectives Key Topic Students will Atomic physics • practice and review atomic physics concepts and equations; Degree of Difficulty • apply Planck’s constant; Moderate • determine the deBroglie wavelength of a proton; and analyze the frequency of photons. • Teacher Prep Time 10 minutes Degree of Difficulty For the average student in AP Physics B, this problem is moderately difficult Class Time Required due to the limited amount of time available in AP Physics B to the study of 25–35 minutes atomic and nuclear physics. Students should be provided with the mass of a proton, speed of light, and the necessary equations located on the AP Technology physics equation sheet. - TI-Nspire™ Learning Handhelds For part C, students should understand the relationship between frequency - TI-Nspire document: and energy of electromagnetic waves, and the relationship between the Ionizing_Radiation.tns speed of these waves, both in wavelength and frequency. Materials Class Time Required AP Physics equation sheet This problem requires 25–35 minutes. -------------------------------- • Introduction: 10 minutes o Read and discuss the background section with the class before Learning Objectives for students work on the problem. AP Physics Atomic and Nuclear Student Work Time: 10–15 minutes • Physics: • Post Discussion: 5–10 minutes - Atomic Physics and Quantum Effects Background NSES This problem is part of a series of problems that apply Math and Science Standards Science @ Work in NASA’s research facilities. - Physical Science The International Space Station (ISS) orbits the Earth at an approximate - Science in Personal and altitude of 407 km (252 mi). At this altitude, astronauts are not as well Social Perspectives protected by the Earth’s atmosphere, and are exposed to higher levels of - History and Nature of space radiation than what is experienced on the Earth’s surface.
    [Show full text]
  • Acceleration of Particles to High Energies in Earth's Radiation Belts
    Space Sci Rev (2012) 173:103–131 DOI 10.1007/s11214-012-9941-x Acceleration of Particles to High Energies in Earth’s Radiation Belts R.M. Millan · D.N. Baker Received: 16 April 2012 / Accepted: 30 September 2012 / Published online: 25 October 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Discovered in 1958, Earth’s radiation belts persist in being mysterious and un- predictable. This highly dynamic region of near-Earth space provides an important natural laboratory for studying the physics of particle acceleration. Despite the proximity of the ra- diation belts to Earth, many questions remain about the mechanisms responsible for rapidly energizing particles to relativistic energies there. The importance of understanding the ra- diation belts continues to grow as society becomes increasingly dependent on spacecraft for navigation, weather forecasting, and more. We review the historical underpinning and observational basis for our current understanding of particle acceleration in the radiation belts. Keywords Particle acceleration · Radiation belts · Magnetosphere 1 Introduction 1.1 Motivation Shortly after the discovery of Earth’s radiation belts, the suggestion was put forward that processes occurring locally, in near-Earth space, might be responsible for the high energy particles observed there. Efforts were also carried out to search for an external source that could inject multi-MeV electrons into Earth’s inner magnetosphere where they could then be trapped by the magnetic field. Energetic electrons are in fact observed in interplanetary space, originating at both Jupiter and the sun. However, the electron intensity in Earth’s radiation belts is not correlated with the interplanetary intensity, and a significant external R.M.
    [Show full text]
  • Recent Advances in Our Understanding of the Earth's
    Recent advances in our understanding of the Earth’s Radiation Belts Shrikanth Kanekal Daniel Baker David Sibeck Heliophysics Division Laboratory for Atmospheric and Space Physics Heliophysics Division NASA Goddard SpaceFlight Center University of Colorado, Boulder NASA Goddard SpaceFlight Center Greenbelt, USA Boulder, USA Greenbelt, USA [email protected] [email protected] [email protected] Abstract—The Earth’s radiation belts were discovered by belt [5]. Although there have been earlier missions that studied James van Allen more than fifty years ago and are a home to a the radiation belts NASA’s flagship mission, the Radiation Belt plethora of fascinating processes ranging from low energy cold Storm Probes (RBSP) is one of the most advance missions plasma to relativistic and ultra-relativistic particle populations. The traditional morphological picture of the radiation belts is to probe radiation belt dynamics. The mission carryies a that of an outer belt comprising mostly of electrons and an comprehensive suite of sensors on each of the two identically inner belt comprising mostly of protons with a so-called slot instrumented spacecraft. RBSP was named Van Allen Probes region separating the two. The inner belt is somewhat stable, soon after launch on August 30, 2012 [6]. The science goal while the outer radiation belt is very dynamical and shows of the mission is to improve our ”fundamental understanding variability in energetic electron populations over a wide range of energies, intensities, and time scales ranging from minutes, days of radiation belt dynamics in a quantitative and predictable and even years. This variability is due to dynamical processes of manner”.
    [Show full text]
  • Fast Acceleration of “Killer” Electrons and Energetic Ions by Inter- Planetary Shock Stimulated ULF Waves in the Inner Magnetosphere
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Review SPECIAL TOPIC: Space Physics & Space Weather April 2011 Vol.56 No.12: 1188−1201 Geophysics doi: 10.1007/s11434-010-4308-8 Fast acceleration of “killer” electrons and energetic ions by inter- planetary shock stimulated ULF waves in the inner magnetosphere ZONG QiuGang*, WANG YongFu, YUAN ChongJing, YANG Biao, WANG ChenRui & ZHANG XiangYun Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China Received August 30, 2010; accepted November 25, 2010 Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of “killer” electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is consid- ered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to ac- celerate electrons to relativistic energies, is too long to explain our observations.
    [Show full text]
  • Small Satellite Earth-To-Moon Direct Transfer Trajectories Using the CR3BP
    Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2019 Small satellite earth-to-moon direct transfer trajectories using the CR3BP Garrett Levi McMillan Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Aerospace Engineering Commons Department: Recommended Citation McMillan, Garrett Levi, "Small satellite earth-to-moon direct transfer trajectories using the CR3BP" (2019). Masters Theses. 7920. https://scholarsmine.mst.edu/masters_theses/7920 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SMALL SATELLITE EARTH-TO-MOON DIRECT TRANSFER TRAJECTORIES USING THE CR3BP by GARRETT LEVI MCMILLAN A THESIS Presented to the Graduate Faculty of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE in AEROSPACE ENGINEERING 2019 Approved by: Dr. Henry Pernicka, Advisor Dr. David Riggins Dr. Serhat Hosder Copyright 2019 GARRETT LEVI MCMILLAN All Rights Reserved iii ABSTRACT The CubeSat/small satellite field is one of the fastest growing means of space exploration, with applications continuing to expand for component development, commu- nication, and scientific research. This thesis study focuses on establishing suitable small satellite Earth-to-Moon direct-transfer trajectories, providing a baseline understanding of their propulsive demands, determining currently available off-the-shelf propulsive technol- ogy capable of meeting these demands, as well as demonstrating the effectiveness of the Circular Restricted Three Body Problem (CR3BP) for preliminary mission design.
    [Show full text]
  • History and Science Motivation for the Van Allen Probes Mission
    History and Science Motivation for the Van Allen Probes Mission History and Science Motivation for the Van Allen Probes Mission Barry H. Mauk, Aleksandr Y. Ukhorskiy, Nicola J. Fox, Ramona L. Kessel, David G. Sibeck, and Shrikanth G. Kanekal ABSTRACT The NASA Van Allen Probes (previously known as Radiation Belt Storm Probes, or RBSP) mission addresses how populations of high-energy charged particles are created, vary, and evolve in space environments, specifically within Earth’s magnetically trapped radiation belts. The Probes were launched 30 August 2012 and comprise two spacecraft making in situ measurements for the past several years in nearly the same highly elliptical, low inclination orbits (1.1 × 5.8 RE , 10°). The initial orbits are slightly different so that one spacecraft laps the other spacecraft about every 67 days, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particles (electrons, ions, ion composition), fields (E and B), and wave distributions (dE and dB) needed to resolve the most critical science questions. Summarized in this article are the high-level science objectives for the Probes mission, examples of the radiation belts’ most compelling scien- tific mysteries that motivated the mission, and the mission design that targets these mysteries and objectives. The instruments that are now working to deliver these measurements are also addressed. INTRODUCTION It has now been more than 50 years since observa- to characterizing their properties for engineering and tions from the first spacecraft in the late 1950s were space environment applications.
    [Show full text]
  • S Van Allen Radiation Belts
    ARTICLE Received 21 Jun 2013 | Accepted 18 Oct 2013 | Published 19 Nov 2013 DOI: 10.1038/ncomms3795 Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts Ian R. Mann1, E.A. Lee1, S.G. Claudepierre2, J.F. Fennell2, A. Degeling1, I.J. Rae1,3, D.N. Baker4, G.D. Reeves5, H.E. Spence6, L.G. Ozeke1, R. Rankin1, D.K. Milling1, A. Kale1, R.H.W. Friedel5 & F. Honary7 Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modelling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents a significant shift in known Van Allen radiation belt dynamics and structure. These periodic collisionless betatron acceleration processes also have applications in understanding the dynamics of, and periodic electromagnetic emissions from, distant plasma-astrophysical systems. 1 Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada. 2 The Aerospace Corporation, Los Angeles, California 90009, USA. 3 Department of Space and Climate Physics, Mullard Space Science Laboratory, University College London, Holmbury St.
    [Show full text]
  • Multipoint Satellite Observations Provide Insight Into the Origins of Substorms
    Multipoint satellite observations provide insight into the origins of substorms August 16, 2018 The nature of substorms in the magnetosphere, the magnetic-field region that surrounds the Earth, has long been a topic of research. A substorm results from the interaction between the Sun and Earth. The sun’s outer atmosphere is constantly expanding into space producing the solar wind. When the solar wind interacts with the Earth’s magnetic field, it couples energy into the magnetosphere through magnetic reconnection. A research team, including Geoffrey Reeves (Intelligence & Space Research, ISR-DO) has investigated observations from multiple satellites to develop a more comprehensive picture of substorm interactions with the Earth’s magnetosphere. The Journal of Geophysical Research: Space Physics published their findings. Magnetic reconnection happens between the Sun’s magnetic field (carried by the solar wind) and the Earth’s. The reconnection happens on the sunward side (the day side) of the Earth where the two systems interact. After dayside reconnection, one end of the field line remains connected to the Earth while the solar wind carries the other end to the night side of the Earth. This action stretches and compresses the magnetic field on the night side forming a magnetotail. When sufficient magnetic energy builds up, reconnection starts between the field lines attached to Earth in the northern and southern hemispheres. Reconnection in the magnetotail has two effects. It produces a magnetic “bubble” that pops off back into the solar wind and it creates a slingshot of magnetic field lines that return toward Earth. The result is a substorm, a type of space weather.
    [Show full text]
  • Outer Radiation Belt and Inner Magnetospheric Response to Sheath Regions of Coronal Mass Ejections: a Statistical Analysis
    Ann. Geophys., 38, 683–701, 2020 https://doi.org/10.5194/angeo-38-683-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis Milla M. H. Kalliokoski1, Emilia K. J. Kilpua1, Adnane Osmane1, Drew L. Turner2, Allison N. Jaynes3, Lucile Turc1, Harriet George1, and Minna Palmroth1,4 1Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland 2Space Sciences Department, The Aerospace Corporation, El Segundo, California, USA 3Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA 4The Finnish Meteorological Institute, Helsinki, Finland Correspondence: Milla M. H. Kalliokoski (milla.kalliokoski@helsinki.fi) Received: 25 October 2019 – Discussion started: 6 November 2019 Revised: 21 April 2020 – Accepted: 27 April 2020 – Published: 9 June 2020 Abstract. The energetic electron content in the Van Allen ra- energy-dependent depletion results from the magnetopause diation belts surrounding the Earth can vary dramatically at shadowing that dominates the losses at large distances, while several timescales, and these strong electron fluxes present a the wave–particle interactions dominate closer to the Earth. hazard for spacecraft traversing the belts. The belt response We also show that non-geoeffective sheaths cause significant to solar wind driving is, however, largely unpredictable, and changes in the outer belt electron fluxes. the direct response to specific large-scale heliospheric struc- tures has not been considered previously. We investigate the immediate response of electron fluxes in the outer belt that are driven by sheath regions preceding interplanetary coro- 1 Introduction nal mass ejections and the associated wave activity in the in- ner magnetosphere.
    [Show full text]
  • Response of Outer Radiation Belt Electrons to a Magnetic Storm
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 1997 Response of outer radiation belt electrons to a magnetic storm Donald Hugh Brautigam University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Brautigam, Donald Hugh, "Response of outer radiation belt electrons to a magnetic storm" (1997). Doctoral Dissertations. 1988. https://scholars.unh.edu/dissertation/1988 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by I sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]