FROM the SUN to the STARS Narration & Sync Transcript FINAL
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Iowa Instruments in Space
University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar. -
So, Has Voyager 1 Left the Solar System? Scientists Face Off Cosmic-Ray Fluctuations Could Mean the Craft Has Exited the Sun's Magnetic Field
NATURE | NEWS So, has Voyager 1 left the Solar System? Scientists face off Cosmic-ray fluctuations could mean the craft has exited the Sun's magnetic field. Ron Cowen 21 March 2013 A space physicist this week suggests that NASA’s venerable Voyager 1 spacecraft has become the first vehicle to venture beyond the heliosphere — the magnetic bubble created by the Sun — but other mission scientists disagree. William Webber of New Mexico State University in Las Cruces bases the claim on signals recorded last August by the Voyager 1 cosmic-ray subsystem — a device that he helped to build — along with his late colleague and study co-author Francis McDonald. JPL-Caltech/NASA Voyager 1 recorded a sudden drop in cosmic rays The instrument recorded a dramatic drop in the intensity of the cosmic rays trapped last August, a possible sign that it had left the in the Sun’s magnetic field and a concomitant rise in that of rays generated by more Sun's sphere of influence. distant reaches of the Galaxy. That pattern indicates that Voyager 1 has travelled beyond the Sun’s magnetic influence and is no longer being shielded from galactic cosmic rays, the researchers report in a study published online this week in Geophysical Research Letters1. But if one is to believe a press release issued by NASA on 20 March (the same day the report was published), the two researchers jumped the gun. Other Voyager scientists who analysed the same data last autumn reiterate what they said then: the cosmic-ray data indicate that Voyager 1 is in a transition zone within the outer part of the heliosphere, but until a dramatic change in magnetic-field intensity and direction is detected, the craft remains firmly within the Sun’s magnetic sphere of influence. -
Abundances 164 ACE (Advanced Composition Explorer) 1, 21, 60, 71
Index abundances 164 CIR (corotating interaction region) 3, ACE (Advanced Composition Explorer) 1, 14À15, 32, 36À37, 47, 62, 108, 151, 21, 60, 71, 170À171, 173, 175, 177, 254À255 200, 251 energetic particles 63, 154 SWICS 43, 86 Climax neutron monitor 197 ACRs (anomalous cosmic rays) 10, 12, 197, CME (coronal mass ejection) 3, 14À15, 56, 258À259 64, 86, 93, 95, 123, 256, 268 CIRs 159 composition 268 pickup ions 197 open flux 138 termination shock 197, 211 comets 2À4, 11 active longitude 25 ComptonÀGetting effect 156 active region 25 convection equation tilt 25 diffusion 204 activity cycle (see also solar cycle) 1À2, corona 1À2 11À12 streamers 48, 63, 105, 254 Advanced Composition Explorer see ACE temperature 42 Alfve´n waves 116, 140, 266 coronal hole 30, 42, 104, 254, 265 AMPTE (Active Magnetospheric Particle PCH (polar coronal hole) 104, 126, 128 Tracer Explorer) mission 43, 197, coronal mass ejections see CME 259 corotating interaction regions see CIR anisotropy telescopes (AT) 158 corotating rarefaction region see CRR Cosmic Ray and Solar Particle Bastille Day see flares Investigation (COSPIN) 152 bow shock 10 cosmic ray nuclear composition (CRNC) butterfly diagram 24À25 172 cosmic rays 2, 16, 22, 29, 34, 37, 195, 259 Cassini mission 181 anomalous 195 CELIAS see SOHO charge state 217 CH see coronal hole composition 196, 217 CHEM 43 convection–diffusion model 213 282 Index cosmic rays (cont.) Energetic Particle Composition Experiment drift 101, 225 (EPAC) 152 force-free approximation 213 energetic particle 268 galactic 195 anisotropy 156, -
IMTEC-89-46FS Space Operations: Listing of NASA Scientific Missions
C L Listing of NASA Scientific Missions, 1980-2000 -- ‘;AO,~lM’I’kX :-8!)- .^. .I ., ^_. ._ .- __..... ..-... .- .._.-..-.. -_----__-.- _.____-___-- UnIted States General Accounting Office Washington, D.C. 20548 Information Management and Technology Division B-234056 April 7, 1989 The Honorable Bill Nelson Chairman, Subcommittee on Space Science and Applications Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: As requested by your office on March 14, 1989, we are providing a list of the National Aeronautics and Space Administration’s (NASA) active and planned scientific missions, 1980-2000.~ We have included missions with the following status: l launches prior to 1980, and those since 1980 that either ended after 1980 or are currently approved by NASA and remain active; and . planned launches that have been approved or proposed by NASA. As agreed, our compilation covers the following four major scientific disciplines: (1) planetary and lunar, (2) earth sciences, (3) space physics, and (4) astrophysics. Appendixes II-V present this information, includ- ing mission names and acronyms, actual or anticipated launch dates, and the actual or expected end-of-mission dates, in tables and figures. As requested, we did not list other types of NASA missions in biology and life sciences, manufacturing sciences, and communication technology. During this period, NASA has or plans to support 84 scientific missions in these four disciplines: Table! 1: Summary of NASA’s Scientific A Ml88iC>nr, 1980-2000 Active Planned January April 1989 - 1980 - March 1989 December 2000 Total Planetary and Lunar 5 7 12 Earth Sciences 3 27 30 /I Space Physics 6 20 26 Astrophysics 2 14 16 Totals 16 68 84 ‘Missions include NASAjoint ventures with other countries, as well as NASAscientific instruments flown on foreign spacecraft. -
An Eco Explorer Is a Person Who Investigates
Eco Explorer n eco explorer is a person who investigates A environmental issues and works to make positive changes to the environment. In this badge, you’ll be an eco explorer as you take a look at different environmental issues and choose one to explore further. Steps 1. Meet an eco explorer 2. Explore biodiversity 3. Investigate a global ecosystem issue 4. Plan a trip to explore and work on an issue 5. Share what you learned Purpose When I’ve earned this badge, I’ll have researched different environmental issues and taken at least one trip to see how an area is impacted. Prepare Ahead: Before you start this badge, learn the Leave No Trace Seven Principles so you can follow them as you work through the steps. You can read about them on page three. ECO EXPLORER 1 Every step has three choices. Do ONE choice to complete each step. Inspired? STEP Meet an Do more! 1 eco explorer With help from an adult, arrange to talk to an eco explorer about their work, or research one in books or online. An eco explorer can be anyone who has taken their passion for the environment and used it to make a difference. What inspired them to get involved with environmental issues? How have they impacted the world? CHOICES—DO ONE: Talk to a traveler who has taken a trip to explore an environmental issue or who is interested in eco-friendly travel. (You might get inspired by reading about the conservation-themed Girl Scout Destination trips at www.girlscouts.org/destinations.) How can people travel in an environmentally-friendly way? How can travel be used to make a difference in the world? If you have a trip planned in the future, you might talk about it and ask for tips on making it more eco-friendly. -
The Origins of the Discovery Program, 1989-1993
Space Policy 30 (2014) 5e12 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Transforming solar system exploration: The origins of the Discovery Program, 1989e1993 Michael J. Neufeld National Air and Space Museum, Smithsonian Institution, United States article info abstract Article history: The Discovery Program is a rarity in the history of NASA solar system exploration: a reform program that Received 18 October 2013 has survived and continued to be influential. This article examines its emergence between 1989 and Accepted 18 October 2013 1993, largely as the result of the intervention of two people: Stamatios “Tom” Krimigis of the Johns Available online 19 April 2014 Hopkins University Applied Physics Laboratory (APL), and Wesley Huntress of NASA, who was Division Director of Solar System Exploration 1990e92 and the Associate Administrator for Space Science 1992 Keywords: e98. Krimigis drew on his leadership experience in the space physics community and his knowledge of Space history its Explorer program to propose that it was possible to create new missions to the inner solar system for a NASA Space programme organization fraction of the existing costs. He continued to push that idea for the next two years, but it took the influence of Huntress at NASA Headquarters to push it on to the agenda. Huntress explicitly decided to use APL to force change on the Jet Propulsion Laboratory and the planetary science community. He succeeded in moving the JPL Mars Pathfinder and APL Near Earth Asteroid Rendezvous (NEAR) mission proposals forward as the opening missions for Discovery. But it took Krimigis’s political skill and access to Sen. -
Detection of Chemical Species in Titan's Atmosphere Using High
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO FÍSICA Detection of Chemical Species in Titan’s Atmosphere using High-Resolution Spectroscopy José Luís Fernandes Ribeiro Mestrado em Física Especialização em Astrofísica e Cosmologia Dissertação orientada por: Doutor Pedro Machado 2019 Acknowledgments This master’s thesis would not be possible without the support of my parents, Maria de F´atimaPereira Fernandes Ribeiro and Lu´ısCarlos Pereira Ribeiro, who I would like to thank for believing in me, encouraging me and allowing me to embark on this journey of knowledge and discovery. They made the person that I am today. I would like to thank all my friends and colleagues who accompanied me all these years for the great moments and new experiences that happened trough these years of university. They contributed a lot to my life and for that I am truly grateful. I just hope that I contributed to theirs as well. I also would like to thank John Pritchard from ESO Operations Support for helping me getting the EsoReflex UVES pipeline working on my computer, without him we would probably wouldn’t have the Titan spectra reduced by now. And I also like to thank Doctor Santiago P´erez-Hoyos for his availability to teach our planetary sciences group how to use the NEMESIS Radiative Transfer model and Doctor Th´er`ese Encrenaz for providing the ISO Saturn and Jupiter data. I would like to give a special thank you to Jo˜aoDias and Constan¸caFreire, for their support and help during this work. Lastly, and surely not the least, I would like to thank my supervisor Pedro Machado for showing me how to be a scientist and how to do scientific work. -
Strategies for Rapid Implementation of Interstellar Missions: Precursors and Beyond (4)
Paper ID: 38338 68th International Astronautical Congress 2017 oral 15th IAA SYMPOSIUM ON VISIONS AND STRATEGIES FOR THE FUTURE (D4) Strategies for Rapid Implementation of Interstellar Missions: Precursors and Beyond (4) Author: Dr. Ralph L. McNutt, Jr. Johns Hopkins University Applied Physics Laboratory, United States, [email protected] Prof. Robert Wimmer-Schweingruber University of Kiel, Germany, [email protected] Prof. Mike Gruntman University of Southern California, United States, [email protected] Prof. Stamatios Krimigis The John Hopkins University Applied Physics Laboratory, United States, [email protected] Dr. Edmond Roelof The John Hopkins University Applied Physics Laboratory, United States, [email protected] Dr. Gary Zank University of Alabama in Huntsville, United States, [email protected] Prof. Edward C. Stone California Institute of Technology, United States, [email protected] Dr. Pontus Brandt Johns Hopkins University Applied Physics Laboratory, United States, [email protected] Mr. Steven Vernon The John Hopkins University Applied Physics Laboratory, United States, [email protected] NEAR-TERM EXPLORATION OF THE INTERSTELLAR MEDIUM Abstract Following confirmation of the solar wind by Mariner 2 in 1962, scientific speculation turned to the interaction of that wind with the nearby interstellar medium. The Voyager Interstellar Mission (VIM) { an incredible 40-year old \by-product" of the Grand Tour of the outer solar system { has provided initial, but only partial answers to this 50-year old problem. Most of the scientific community concurs that Voyager 1 has entered into the very local interstellar medium (VLISM), albeit still affected by readily identifiable dynamics of Sun-derived activity. -
At the Solar System's Edge, More Surprises from Voyager 27 June 2013
At the solar system's edge, more surprises from Voyager 27 June 2013 Voyager's Low-Energy Charged Particle (LECP) instrument. "But the wait itself is incredibly exciting, since Voyager continues to defy predictions and change the way we think about this mysterious and wonderful gateway region to the galaxy." Artist's concept of NASA's Voyager spacecraft. Credit: NASA/JPL-Caltech (Phys.org) —Data from NASA's Voyager 1 spacecraft continues to provide new insight on the outskirts of our solar system, a frontier thought to be the last that Voyager will cross before becoming the first man-made object to reach interstellar space. This artist's concept shows NASA's Voyager 1 spacecraft exploring a region called the "depletion region" or In papers published this week in the journal "magnetic highway" at the outer limits of our heliosphere, Science, scientists from the Johns Hopkins the bubble the sun blows around itself. In this region, the magnetic field lines generated by our sun (yellow arcs) University Applied Physics Laboratory (APL) in are piling up and intensifying and low-energy charged Laurel, Md., and other Voyager partner institutions particles that are accelerated in the heliosphere's provide more clarity on the region they named the turbulent outer later (green dots) have disappeared. "magnetic highway" in December 2012. Cruising Scientists think the depletion region is the last region through what scientists describe as a curious, Voyager 1 has to cross before reaching interstellar unexpected charged-particle environment, Voyager space, which is the space between stars, Voyager 1 has detected, for the first time, low-energy galactic passed a shockwave known as the termination shock in cosmic rays, now that particles of the same energy 2004, where solar wind suddenly slowed down and from inside the bubble around our Sun became turbulent. -
Index to Volume 110 July–December 2005
index to volume 110 july–december 2005 ■ authors hobby Q&A, 4:112, 5:112, 6:116 Great Expectations, 1:48 Hubble’s Prospects Brighten, 2:25 Hole in One, 2:46 Abed, Abdulkader M., Science in Iraq, 1:13 Paradigm Shift, 2:8 On the Air, 4:46 Adler, Alan, Digicam Astrophotography, 5:114 Parallel Universes, 6:8 Skin Deep, 5:46 Aguirre, Edwin L., Amateur Team Finds 100 Planetary Plasticity, 5:8 Kwitter, Karen B., Swan Song in Aquarius, A, 5:30 Supernovae, 5:101 Vision Quest: Optimizing Your Eyes for Lederman, Russ, The Right Tools for the Job, 1:12 April’s Unique Solar Eclipse, 3:87 Astronomy, 3:28 Levy, David H., Crimson Ring, A, 2:107 Canadian Amateurs Access Big Hawaiian Scopes, Filippenko, Alexei V., Why Are Supernovae Important? Earth Strikes Back, 5:104 4:98 5:102 In Praise of Penumbral Eclipses, 3:113 Community News: America’s Young Astronomers Flanders, Tony, book review: Deep Sky Observer’s Introducing the Levy List, 6:80 Recognized, 2:102 Guide, Neil Bone, 4:90 Master Storyteller, A, 4:104 Comet Discoverers Recognized, 4:100 book review: Night Sky Atlas, Robin Scagell, 4:90 Seeing Einstein’s Gravity Lens, 1:108 Constellation Stamps to Be Issued, 4:100 book review: Stargazing with a Telescope, Robin Voyage to Remember, A, 6:114 S&T Executive Editor Honored, 4:100 Scagell, 4:90 Livingston, Andrew, Observing by Ear, 3:134 Universo Celebrates Its 10th Anniversary, 2:102 German Amateur’s Supernova in M51, 5:103 hobby Q&A, 2:110 L. -
The Near-Earth Asteroid Rendezvous (NEAR-Shoemaker) Mission / Howard E
I-38738 NEAR BookCVR.Fin2 3/10/05 11:58 AM Page 1 d National Aeronautics and Space Administration Office of External Relations Low-CostLow-Cost History Division Washington, DC 20546 InnovationInnovation inin SpaceflightSpaceflight TheThe NearNear EarthEarth AsteroidAsteroid RendezvousRendezvous (NEAR)(NEAR) ShoemakerShoemaker MissionMission Monographs in Aerospace History No. 36 • SP-2005-4536 fld I-38738 NEAR BookCVR.Fin2 3/10/05 11:58 AM Page 2 Cover (from the top): The cover combines a closeup image of Eros, a photograph of the 1996 launch of the Near Earth Asteroid Rendezvous (NEAR) expedition, and a picture of the mission operations center taken during the second year of flight. NEAR operations manager Mark Holdridge stands behind the flight consoles. Asteroid and operations center photographs courtesy of Johns Hopkins University/Applied Physics Laboratory. Launch photograph courtesy of the National Aeronautics and Space Administration. (NASA KSC-96PC-308) Howard E. McCurdy Low-Cost Innovation in Spaceflight The Near Earth Asteroid Rendezvous (NEAR) Shoemaker Mission The NASA History Series Monographs in Aerospace History Number 36 NASA SP-2005-4536 National Aeronautics and Space Administration Office of External Relations History Division Washington, DC 2005 Library of Congress Cataloging-in-Publication Data McCurdy, Howard E. Low cost innovation in spaceflight : the Near-Earth Asteroid Rendezvous (NEAR-Shoemaker) Mission / Howard E. McCurdy. p. cm. — (Monographs in aerospace history ; no. 36) 1. Microspacecraft. 2. Eros (Asteroid) -
Small Satellite Earth-To-Moon Direct Transfer Trajectories Using the CR3BP
Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2019 Small satellite earth-to-moon direct transfer trajectories using the CR3BP Garrett Levi McMillan Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Aerospace Engineering Commons Department: Recommended Citation McMillan, Garrett Levi, "Small satellite earth-to-moon direct transfer trajectories using the CR3BP" (2019). Masters Theses. 7920. https://scholarsmine.mst.edu/masters_theses/7920 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. SMALL SATELLITE EARTH-TO-MOON DIRECT TRANSFER TRAJECTORIES USING THE CR3BP by GARRETT LEVI MCMILLAN A THESIS Presented to the Graduate Faculty of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE in AEROSPACE ENGINEERING 2019 Approved by: Dr. Henry Pernicka, Advisor Dr. David Riggins Dr. Serhat Hosder Copyright 2019 GARRETT LEVI MCMILLAN All Rights Reserved iii ABSTRACT The CubeSat/small satellite field is one of the fastest growing means of space exploration, with applications continuing to expand for component development, commu- nication, and scientific research. This thesis study focuses on establishing suitable small satellite Earth-to-Moon direct-transfer trajectories, providing a baseline understanding of their propulsive demands, determining currently available off-the-shelf propulsive technol- ogy capable of meeting these demands, as well as demonstrating the effectiveness of the Circular Restricted Three Body Problem (CR3BP) for preliminary mission design.