Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B

Total Page:16

File Type:pdf, Size:1020Kb

Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis, 112* R Aquarii, 337 Z Camelopardalis, 335 a Aquilae, see Altair d Cancri, 166 g Aquilae, 174* Z Cancri, 166 z Aquilae, 222 38 Cancri, 166 Z Aquilae, 224, 225 39 Cancri, 166, 172–173 V603 Aquilae, see Nova Aquilae 1918 a Canis Majoris, see Sirius Nova Aquilae 1918, 318, 331* b Canis Majoris, 215, 242, 275 y Arae, 272* d Canis Majoris, 218*, 242 Arcturus, 9, 73, 74*, 80*, 88, 162, 163*, ε Canis Majoris, 10 164, 164*, 187–188, 216, 241, 244, 341 o1 Canis Majoris, 168* g2 Arietis, 253 t Canis Majoris, 242 d Arietis, 49* a Canis Minoris, see Procyon 377 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information 378 Star index Canopus, 9, 74*, 215–216, 241 b Crucis, 10, 264 a2 Canum Venaticorum, 252 CS 22885-96, 180* b Canum Venaticorum, 188* CS 30493-39, 180* RS Canum Venaticorum, 211, 250, 332 Cyg OB2 No. 12, 265, 267, 276, 283 Capella, 9, 73, 74*, 80*, 162, 185–187, 337 a Cygni, see Deneb a Carinae, see Canopus b Cygni, see Albireo Z Carinae, 216, 276–279, 278*, 279*, 300 g Cygni, 306 l (“el”) Carinae, 224 Z Cygni, 376 S Carinae, 108* w Cygni, 119 RR Carinae, 112* P Cygni, 277, 279*, 300 b Cassiopeiae, 236 16 Cygni A, 195 g Cassiopeiae, 274 16 Cygni B, 195 k Cassiopeiae, 271* 31 Cygni, 177 r Cassiopeiae, 178, 185, 211, 215, 239 32 Cygni, 177 j Cassiopeiae, 246* 61 Cygni, 163, 167, 171 U Cassiopeiae, 112* 61 Cygni A, 109*, 164, 168*, 188* V509 Cassiopeiae, see HR 8752 61 Cygni B, 109*, 168*, 174* Castor, 26, 163 R Cygni, 121 a Centauri, 9, 12, 16, 26, 171, 185, 241 W Cygni, 80* a Centauri A, 9, 195 SS Cygni, 335–336 a Centauri B, 9, 163–164 CH Cygni, 337, 339 b Centauri, 9 CI Cygni, 338* Proxima Centauri, 9, 26, 115, 126, 128, 185 V1057 Cygni, 212 b Cephei, 275 V1500 Cygni, see Novae Cygni 1975 d Cephei, 20, 211, 224 V1974 Cygni, see Nova Cygni 1992 l Cephei, 81* Nova Cygni 1975, 317–318 m Cephei, 118, 177, 265 Nova Cygni 1992, 334 19 Cephei, 294* Cygnus OB2 No. 12, see Cyg OB2 No. 12 U Cephei, 177 Cygnus X-1, 340, 375–376 RW Cephei, 178, 211 VV Cephei, 115, 118, 177 DEN J0255–4700, 132, 134* DO Cephei, see Kru¨ger 60 Deneb, 5, 10, 242–243, 317 k1 Ceti, 188* Dog Star, see Sirius o Ceti, see Mira b Doradus, 224–225 9 Ceti, 195 g Doradus, 236 U Ceti, 108* S Doradus, 90, 300 UV Ceti, 128 s Draconis, 168* ZZ Ceti, 289 AG Draconis, 337, 338* CFBDS J005910.83-011401.3, 160–161, 161* Egg Nebula, 362 a Circini, 215 Electra, see 17 Tauri FK Comae Berenices, 211 a Eridani, see Achernar a Coronae Borealis, 27, 242 b Eridani, 243 r Coronae Borealis, 195 ε Eridani, 168*, 257 R Coronae Borealis, 110, 238*–239* 40 Eridani, 259 T Coronae Borealis, 335 40 Eridani B, 92, 246*, 258–259, 364 b Corvi, 185 40 Eridani C, 109*, 128, 258 Crab pulsar, 372 58 Eridani, 206 Crab Nebula, 373* a Crucis, 9, 25, 264 Fomalhaut, 10, 241, 257–258 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index 379 a Geminorum, see Castor He2-99, 328, 329* b Geminorum, see Pollux a Herculis, 122 g Geminorum, 251* p Herculis, 168* d Geminorum, 49*, 80* 30 Herculis, 110* ε Geminorum, 189* AM Herculis, 336 z Geminorum, 224 BL Herculis, 229 k Geminorum, 80*, 189* DQ Herculis, 336, see also Nova Herculis U Geminorum, 335 1934 GL 229, 138–139 Nova Herculis 1934, 318 GL 229B, 95*, 138, 141 Herschel’s Garnet Star, see m Cephei GL 411, 109* HH 30, 349 GL 581, 131 HH 34, 347 GL 725B, 109* Hind’s Crimson Star, see R Leporis Guest Star of 1054, 372–373 R Horologii, 108* HR 749 A, 269* Hadar, see b Centauri HR 1029, 269* HD 23585, 245* HR 1040, 87*, 246* HD 35155, 126* HR 3750, 206 HD 36936, 269* HR 3974, 245* HD 37061, 291 HR 4345, 206 HD 46149, 295* HR 5134, 112* HD 46150, 294*–295* HR 5355, 252* HD 46202, 269* HR 8752, 185, 211 HD 46223, 295* HR 8799, 257 HD 52432, 75* HR 8832, 168* HD 64568, 295* HS B, 228 HD 64802, 272* U Hydrae, 111*, 187 HD 69464, 297* a Hydri, 215 HD 73710, 166 HZ 21, 285* HD 73974, 166 HD 93128, 295* IC 351 (nebula), 66* HD 93129A, 276–277, 293, 299* IC 3568 nucleus, 327* HD 93146, 197* ε Indi, 154–156 HD 95735, 168* ε Indi B, 155, 155* HD 97534, 279* ε Indi Ba and Bb, 156, 156* HD 101065, see Przybylski’s Star IRCþ10 216, 125 HD 101190, 295* HD 125248, 252, 252* Kapteyn’s Star, 88 HD 126587, 181* Kelu-1, 144 HD 163758, 297* Kepler’s Star, 366, 369 HD 177175, 112* Kru¨ger 60, 26, 128 HD 190429, 81*, 294* HD 190864, 297* L 970-30, 285* HD 191765, 81* L 1573-31, 285* HD 192103, 81*, 298* 10 Lacertae, 295* HD 192163, 298*, 300 DK Lacertae, see Nova Lacertae 1950 HD 193077, 81* Nova Lacertae 1950, 331* HD 210134, 168* a Leonis, see Regulus HD 215441, 252 b Leonis, 245* HD 226868, 376 Z Leonis, 243 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information 380 Star index R Leonis, 121 z Orionis, 264, 290 CW Leonis, see IRCþ10 216 y1 Orionis, 26 R Leporis, 119 y1 Orionis C, 290, 305 LHS 2065, 109*, 128 y2 Orionis, 291 37 Librae, 174* l Orionis A, 81*, 290, 313* 48 Librae, 274, 275* p3 Orionis, 215 w Lupi, 273 r2 Orionis, 264 a Lyrae, see Vega s Orionis A, 294* b Lyrae, 20, 233 u Orionis, 269* g Lyrae, 233 BL Orionis, 110* d Lyrae, 233 FU Orionis, 212, 346 ε Lyrae, 233 Orion’s Footstool, see Beta Eridani R Lyrae, 233 RR Lyrae 232–233 51 Pegasi, 213 RZ Pegasi, 126* Merope, 268 a Persei, 219, 219*, 244 Mimosa, see Beta Crucis b Persei, see Algol Mira, 20, 74*, 75*, 80*, 107*, 115, 119, z Persei, 279*, 302 122, 187, 338 x Persei, 302 Mizar, 26, 177, 241, 243, 337 o Persei, 302 Mizar A, 177* r Persei, 80* 13 Monocerotis, 87*, 303 w Persei, 290 15 (S) Monocerotis, 295* 48 Persei, 274, 275* R Monocerotis, 348 53 Persei, 276 V614 Monocerotis, see HD 52432 Nova Persei 1901, 318 V838 Monocerotis, 141–143, 143* PG 1159–035, 289 PG 1533–057, 288* NGC 1501 nucleus, 329, 330* b Pictoris, 257 NGC 2440 (nebula), 322*–323* Nova Pictoris 1925, 318 NGC 6543 nucleus, 327*, 363 a Piscis Austrini, see Fomalhaut NGC 6905 nucleus, 330* 19 (TX) Piscium, 111*, 126*, 187 NGC 7009 (nebula), 47* 54 Piscium, 188* NGC 7009 nucleus, 327* Pleione, see 28 Tauri NGC 7027 (nebula), 324* Polaris, 16, 215, 217, 224 North Star, see Polaris Pollux, 10, 72, 163, 213 Procyon, 9, 80*, 215, 216–218, 218*, 219*, OH 231.8þ4.2, 123, see also Calabash 239, 244, 259, 332 Nebula Procyon B, 92, 239, 259–260, 364 OH 357.3–1.3, 124* Proxima, see Proxima Centauri a Ophiuchi, 243 Przybylski’s Star, 249*, 252–253 z Ophiuchi, 290 z Puppis, 74*, 88, 290, 294 r Ophiuchi, 265, 345 r Puppis, 236 RS Ophiuchi, 335 QX Puppis, see OH 231.8þ4.2 Orion Molecular Cloud, 315* Nova Puppis 1942, 318 Orion Nebula, 307* a Orionis, see Betelgeuse R 136a1, 305 b Orionis, see Rigel R 640, 285* g Orionis, 271* Regulus, 10, 264, 266 d Orionis, 264, 290, 313 z1 Reticuli, 195 ε Orionis, 74*, 80*, 290 z2 Reticuli, 195 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B.
Recommended publications
  • An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
    The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • 136, June 2008
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution
    [Show full text]
  • Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold
    Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page Journal of Double Star Observations VOLUME 9 NUMBER 2 April 1, 2013 Inside this issue: Using VizieR/Aladin to Measure Neglected Double Stars 75 Richard Harshaw BN Orionis (TYC 126-0781-1) Duplicity Discovery from an Asteroidal Occultation by (57) Mnemosyne 88 Tony George, Brad Timerson, John Brooks, Steve Conard, Joan Bixby Dunham, David W. Dunham, Robert Jones, Thomas R. Lipka, Wayne Thomas, Wayne H. Warren Jr., Rick Wasson, Jan Wisniewski Study of a New CPM Pair 2Mass 14515781-1619034 96 Israel Tejera Falcón Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold HJ 4217 - Now a Known Unknown 107 Graeme L. White and Roderick Letchford Double Star Measures Using the Video Drift Method - III 113 Richard L. Nugent, Ernest W. Iverson A New Common Proper Motion Double Star in Corvus 122 Abdul Ahad High Speed Astrometry of STF 2848 With a Luminera Camera and REDUC Software 124 Russell M. Genet TYC 6223-00442-1 Duplicity Discovery from Occultation by (52) Europa 130 Breno Loureiro Giacchini, Brad Timerson, Tony George, Scott Degenhardt, Dave Herald Visual and Photometric Measurements of a Selected Set of Double Stars 135 Nathan Johnson, Jake Shellenberger, Elise Sparks, Douglas Walker A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles 142 E. O. Wiley Double Stars at the IAU GA 2012 153 Brian D. Mason Report on the Maui International Double Star Conference 158 Russell M. Genet International Association of Double Star Observers (IADSO) 170 Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page 75 Using VizieR/Aladin to Measure Neglected Double Stars Richard Harshaw Cave Creek, Arizona [email protected] Abstract: The VizierR service of the Centres de Donnes Astronomiques de Strasbourg (France) offers amateur astronomers a treasure trove of resources, including access to the most current version of the Washington Double Star Catalog (WDS) and links to tens of thousands of digitized sky survey plates via the Aladin Java applet.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Download This Article in PDF Format
    A&A 583, A85 (2015) Astronomy DOI: 10.1051/0004-6361/201526795 & c ESO 2015 Astrophysics Reaching the boundary between stellar kinematic groups and very wide binaries III. Sixteen new stars and eight new wide systems in the β Pictoris moving group F. J. Alonso-Floriano1, J. A. Caballero2, M. Cortés-Contreras1,E.Solano2,3, and D. Montes1 1 Departamento de Astrofísica y Ciencias de la Atmósfera, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain e-mail: [email protected] 2 Centro de Astrobiología (CSIC-INTA), ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain 3 Spanish Virtual Observatory, ESAC PO box 78, 28691 Villanueva de la Cañada, Madrid, Spain Received 19 June 2015 / Accepted 8 August 2015 ABSTRACT Aims. We look for common proper motion companions to stars of the nearby young β Pictoris moving group. Methods. First, we compiled a list of 185 β Pictoris members and candidate members from 35 representative works. Next, we used the Aladin and STILTS virtual observatory tools and the PPMXL proper motion and Washington Double Star catalogues to look for companion candidates. The resulting potential companions were subjects of a dedicated astro-photometric follow-up using public data from all-sky surveys. After discarding 67 sources by proper motion and 31 by colour-magnitude diagrams, we obtained a final list of 36 common proper motion systems. The binding energy of two of them is perhaps too small to be considered physically bound. Results. Of the 36 pairs and multiple systems, eight are new, 16 have only one stellar component previously classified as a β Pictoris member, and three have secondaries at or below the hydrogen-burning limit.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • Eps Aur 1982-4 Newsletter No. 6 February 1983
    No. 6 FEBRUARY 1983 Dear Colleagues: Welcome to totality! The eclipse of Episilon Aurigae appears to be close on schedule with first and second contacts occuring in July and December [1982], respectively. The number of reports on photometry and spectroscopy continues to increase, and we are pleased to publish in this issue a significant finding in polarimetry, in addition to other findings. We also provide information presented at recent meetings and in three International Astronomical Union Circulars during January [1983] – see page 2. To improve the efficiency of our operation, we include in this issue a mailing list update response form. We will require return of this form from all interested readers to insure continued receipt of this newsletter. _____________ This Newsletter is (partially) supported by a grant from NASA, administered through the American Astronomical Society. EPS AUR NL 6 1 IAU Circular No. 3759 1983 January 07 ε AURIGAE G. Henson, J. Kemp and D. Kraus, Physics Department, University of Oregon at Eugene, write: "We have observed a sudden change in the polarization of ε Aur between 1982 Nov. 24 and Dec. 9 UT. Measurements in the V filter of normalized Stokes parameters over the interval Aug. 24-Nov. 24 averaged Q = +0.33 +/- 0.03, U = -2.3 +/-0.05. On Dec. 8 and 9 we observed values of Q = +0.017 +/- 0.013, U = -2.404 +/- 0.110 and Q = +0.021 +/- 0.012, U = -2.353 +/- 0.014, respectively, i.e., a 10-sigma drop in the Q parameter. Our photometric observations gave V = 3.75 +/- 0.01 on Dec.
    [Show full text]
  • Occurrence and Core-Envelope Structure of 1–4× Earth-Size Planets Around Sun-Like Stars
    Occurrence and core-envelope structure of 1–4× SPECIAL FEATURE Earth-size planets around Sun-like stars Geoffrey W. Marcya,1, Lauren M. Weissa, Erik A. Petiguraa, Howard Isaacsona, Andrew W. Howardb, and Lars A. Buchhavec aDepartment of Astronomy, University of California, Berkeley, CA 94720; bInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822; and cHarvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board April 16, 2014 (received for review January 24, 2014) Small planets, 1–4× the size of Earth, are extremely common planets. The Doppler reflex velocity of an Earth-size planet − around Sun-like stars, and surprisingly so, as they are missing in orbiting at 0.3 AU is only 0.2 m s 1, difficult to detect with an − our solar system. Recent detections have yielded enough informa- observational precision of 1 m s 1. However, such Earth-size tion about this class of exoplanets to begin characterizing their planets show up as a ∼10-sigma dimming of the host star after occurrence rates, orbits, masses, densities, and internal structures. coadding the brightness measurements from each transit. The Kepler mission finds the smallest planets to be most common, The occurrence rate of Earth-size planets is a major goal of as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital exoplanet science. With three years of Kepler photometry in periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× hand, two groups worked to account for the detection biases in the incident stellar flux that warms our Earth.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • Abstracts Connecting to the Boston University Network
    20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes.
    [Show full text]
  • Fy10 Budget by Program
    AURA/NOAO FISCAL YEAR ANNUAL REPORT FY 2010 Revised Submitted to the National Science Foundation March 16, 2011 This image, aimed toward the southern celestial pole atop the CTIO Blanco 4-m telescope, shows the Large and Small Magellanic Clouds, the Milky Way (Carinae Region) and the Coal Sack (dark area, close to the Southern Crux). The 33 “written” on the Schmidt Telescope dome using a green laser pointer during the two-minute exposure commemorates the rescue effort of 33 miners trapped for 69 days almost 700 m underground in the San Jose mine in northern Chile. The image was taken while the rescue was in progress on 13 October 2010, at 3:30 am Chilean Daylight Saving time. Image Credit: Arturo Gomez/CTIO/NOAO/AURA/NSF National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2010 Revised (October 1, 2009 – September 30, 2010) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 March 16, 2011 Table of Contents MISSION SYNOPSIS ............................................................................................................ IV 1 EXECUTIVE SUMMARY ................................................................................................ 1 2 NOAO ACCOMPLISHMENTS ....................................................................................... 2 2.1 Achievements ..................................................................................................... 2 2.2 Status of Vision and Goals ................................................................................
    [Show full text]