Abstracts Connecting to the Boston University Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
An Atlas of Far-Ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications
The Astrophysical Journal Supplement Series, 211:27 (14pp), 2014 April doi:10.1088/0067-0049/211/2/27 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN ATLAS OF FAR-ULTRAVIOLET SPECTRA OF THE ZETA AURIGAE BINARY 31 CYGNI WITH LINE IDENTIFICATIONS Wendy Hagen Bauer1 and Philip D. Bennett2,3 1 Whitin Observatory, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA; [email protected] 2 Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada 3 Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017, USA Received 2013 March 29; accepted 2013 October 26; published 2014 April 2 ABSTRACT The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe iii and Cr iii) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe ii and O i) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ∼80 km s−1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg. -
Photospheric Activity, Rotation and Magnetic Interaction in LHS 6343 A
Astronomy & Astrophysics manuscript no. lhs6343_v9 c ESO 2018 May 4, 2018 Photospheric activity, rotation and magnetic interaction in LHS 6343 A E. Herrero1, A. F. Lanza2, I. Ribas1, C. Jordi3, and J. C. Morales1, 3 1 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5 parell, 2a pl, 08193 Bellaterra, Spain, e-mail: [email protected], [email protected], [email protected] 2 INAF - Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy, e-mail: [email protected] 3 Dept. d’Astronomia i Meteorologia, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Martí Franquès 1, E08028 Barcelona, Spain, e-mail: [email protected] Received <date> / Accepted <date> ABSTRACT Context. The Kepler mission has recently discovered a brown dwarf companion transiting one member of the M4V+M5V visual binary system LHS 6343 AB with an orbital period of 12.71 days. Aims. The particular interest of this transiting system lies in the synchronicity between the transits of the brown dwarf C component and the main modulation observed in the light curve, which is assumed to be caused by rotating starspots on the A component. We model the activity of this star by deriving maps of the active regions that allow us to study stellar rotation and the possible interaction with the brown dwarf companion. Methods. An average transit profile was derived, and the photometric perturbations due to spots occulted during transits are removed to derive more precise transit parameters. We applied a maximum entropy spot model to fit the out-of-transit optical modulation as observed by Kepler during an uninterrupted interval of 500 days. -
Lhs 6343 C: a Transiting Field Brown Dwarf Discovered by the Kepler Mission∗
The Astrophysical Journal, 730:79 (11pp), 2011 April 1 doi:10.1088/0004-637X/730/2/79 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. LHS 6343 C: A TRANSITING FIELD BROWN DWARF DISCOVERED BY THE KEPLER MISSION∗ John Asher Johnson1,2, Kevin Apps3, J. Zachary Gazak4, Justin R. Crepp1, Ian J. Crossfield5, Andrew W. Howard6, Geoff W. Marcy6, Timothy D. Morton1, Carly Chubak6, and Howard Isaacson6 1 Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA; [email protected] 2 NASA Exoplanet Science Institute (NExScI), CIT Mail Code 100-22, 770 South Wilson Avenue, Pasadena, CA 91125, USA 3 Cheyne Walk Observatory, 75B Cheyne Walk, Horley, Surrey, RH6 7LR, UK 4 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 5 Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 6 Department of Astronomy, University of California, Mail Code 3411, Berkeley, CA 94720, USA Received 2010 September 8; accepted 2011 January 18; published 2011 March 8 ABSTRACT We report the discovery of a brown dwarf that transits one member of the M+M binary system LHS 6343 AB every 12.71 days. The transits were discovered using photometric data from the Kepler public data release. The LHS 6343 stellar system was previously identified as a single high proper motion M dwarf. We use adaptive optics imaging to resolve the system into two low-mass stars with masses 0.370 ± 0.009 M and 0.30 ± 0.01 M, respectively, and a projected separation of 0.55. -
Crowd Science: the Organization of Scientific Research in Open ଝ Collaborative Projects
Research Policy 43 (2014) 1–20 Contents lists available at ScienceDirect Research Policy jou rnal homepage: www.elsevier.com/locate/respol Crowd science: The organization of scientific research in open ଝ collaborative projects a,∗ b Chiara Franzoni , Henry Sauermann a Department of Management, Economics and Industrial Engineering (DIG), Politecnico di Milano, P. Leonardo da Vinci 32, Milan 20133, Italy b Georgia Institute of Technology, Scheller College of Business, 800 W. Peachtree St., Atlanta, GA 30308, USA a r t a b i s c l e i n f o t r a c t Article history: A growing amount of scientific research is done in an open collaborative fashion, in projects sometimes Received 15 November 2012 referred to as “crowd science”, “citizen science”, or “networked science”. This paper seeks to gain a more Received in revised form 12 July 2013 systematic understanding of crowd science and to provide scholars with a conceptual framework and Accepted 13 July 2013 an agenda for future research. First, we briefly present three case examples that span different fields Available online 14 August 2013 of science and illustrate the heterogeneity concerning what crowd science projects do and how they are organized. Second, we identify two fundamental elements that characterize crowd science projects Keywords: – open participation and open sharing of intermediate inputs – and distinguish crowd science from Crowd science other knowledge production regimes such as innovation contests or traditional “Mertonian” science. Citizen science Crowdsourcing Third, we explore potential knowledge-related and motivational benefits that crowd science offers over Community-based production alternative organizational modes, and potential challenges it is likely to face. -
A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System
Space Sci Rev (2020) 216:100 https://doi.org/10.1007/s11214-020-00719-1 A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System Martin Turbet1 · Emeline Bolmont1 · Vincent Bourrier1 · Brice-Olivier Demory2 · Jérémy Leconte3 · James Owen4 · Eric T. Wolf5 Received: 14 January 2020 / Accepted: 4 July 2020 / Published online: 23 July 2020 © The Author(s) 2020 Abstract TRAPPIST-1 is a fantastic nearby (∼39.14 light years) planetary system made of at least seven transiting terrestrial-size, terrestrial-mass planets all receiving a moderate amount of irradiation. To date, this is the most observationally favourable system of po- tentially habitable planets known to exist. Since the announcement of the discovery of the TRAPPIST-1 planetary system in 2016, a growing number of techniques and approaches have been used and proposed to characterize its true nature. Here we have compiled a state- of-the-art overview of all the observational and theoretical constraints that have been ob- tained so far using these techniques and approaches. The goal is to get a better understanding of whether or not TRAPPIST-1 planets can have atmospheres, and if so, what they are made of. For this, we surveyed the literature on TRAPPIST-1 about topics as broad as irradiation environment, planet formation and migration, orbital stability, effects of tides and Transit Timing Variations, transit observations, stellar contamination, density measurements, and numerical climate and escape models. Each of these topics adds a brick to our understand- ing of the likely—or on the contrary unlikely—atmospheres of the seven known planets of the system. -
Refereed Publications That Name
59 Refereed Publications Since 2011 with Named Co-Authors who are NASA Citizen Scientists Compiled by Marc Kuchner February 2021 Authors in bold are citizen scientists. Aurorasaurus Semeter, J., Hunnekuhl, M., MacDonald, E., Hirsch, M., Zeller, N., Chernenkoff, A., & Wang, J. (2020). The mysterious green streaks below STEVE. AGU Advances, 1, e2020AV000183. https://doi.org/10.1029/2020AV000183 Hunnekuhl, M., & MacDonald, E. (2020). Early ground‐based work by auroral pioneer Carl Størmer on the high‐altitude detached subauroral arcs now known as “STEVE”. Space Weather, 18, e2019SW002384. https://doi.org/10.1029/2019SW002384 S. B. Mende. B. J. Harding, & C. Turner. “Subauroral Green STEVE Arcs: Evidence for Low- Energy Excitation” Geophysical Research Letters, Volume 46, Issue 24, Pages 14256-14262 (2019) http://doi.org/10.1029/2019GL086145 S. B. Mende. & C. Turner. “Color Ratios of Subauroral (STEVE) Arcs” Journal of Geophysical Research (Space Physics),Volume 124, Issue 7, Pages 5945-5955 (2019) http://doi.org/10.1029/2019JA026851 Y. Nishimura, Y., B, Gallardo-Lacourt, B., Y, Zou, E. Mishin, D.J. Knudsen, E. F. Donovan, V. Angelopoulos, R. Raybell, “Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy” Geophysical Research Letters, Volume 46, Issue 11, Pages 5637-5644 (2019) Elizabeth A. MacDonald, Eric Donovan, Yukitoshi Nishimura, Nathan A. Case, D. Megan Gillies, Bea Gallardo-Lacourt, William E. Archer, Emma L. Spanswick, Notanee Bourassa, Martin Connors, Matthew Heavner, Brian Jackel, Burcu Kosar, David J. Knudsen, Chris Ratzlaff and Ian Schofield, “New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere” Science Advances, vol. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
A Citation Study of Citizen Science Projects in Space Science and Astronomy
Odenwald, S. 2018. A Citation Study of Citizen Science Projects in Space Science and Astronomy. Citizen Science: Theory and Practice, 3(2): 5, pp. 1–11. DOI: https://doi.org/10.5334/cstp.152 RESEARCH PAPER A Citation Study of Citizen Science Projects in Space Science and Astronomy Sten Odenwald This paper presents a citation study of 143 publications in refereed journals resulting from 23 citizen science (CS) projects in space science and astronomy. The projects generated a median of two papers during their average of six years of operation. The 143 papers produced 4,515 citations for a median of 10 citations/paper. These papers were compared to a uniform group of papers published in the year 2000 in refereed space science journals. The CS papers have an average annual peak citation rate that is about four times the average of the year-2000 sample. The CS citation history profiles peak within 3 years after paper publication but decline thereafter at a faster pace than the average paper published in 2000. This suggests that CS papers “burn brighter” but remain of interest for only half as long as other papers in space science and astronomy. Nevertheless, CS papers compare well with some of the most highly ranked “Top-1000” research papers of the modern era. The proportion of CS papers surpassing 200 citations is one-in-26, which is 40-fold higher than the proportion for the typical paper published in 2000. The study concludes that CS projects are not only as good as conventional non-CS research projects in generating publishable results, but can actually outperform the citation rates of the typical non-CS papers in space science and astronomy. -
Résumés / Abstract
RENCONTRE ANNUELLE DU CRAQ 2016 Auberge Estrimont, Orford, 19{21 avril 2016 Organisateurs / Organizers Lorne Nelson (Bishop's University) et Martin Aub´e(C´egepde Sherbrooke) R´esum´es/ Abstract LISTE DES PARTICIPANTS / ATTENDEES LIST Nom Institution Contribution (Invit´ee/Orale/Affiche) Lo¨ıcAlbert Universit´ede Montr´eal Orale Genevi`eve Arboit Universit´ede Montr´eal - Etienne Artigau Universit´ede Montr´eal Orale Martin Aub´e C´egepde Sherbrooke - Roxane Barnab´e Universit´ede Montr´eal Orale Fr´ederiqueBaron Universit´ede Montr´eal Orale Patrice Beaudoin Universit´ede Montr´eal Orale Pierre Bergeron Universit´ede Montr´eal Orale F´elixBlais Universit´eLaval - Julie Bolduc-Duval A la d´ecouverte de l'Univers Orale Anne Boucher Universit´ede Montr´eal Orale Etienne Bourbeau Universit´eMcGill Orale Daniel Capellupo Universit´eMcGill - Christian Carles Universit´eLaval Orale Pierre Chastenay UQAM Orale Wen-Jian Chung Bishop's University - Benoit C^ot´e University of Victoria - Simon Coud´e Universit´ede Montr´eal Orale Andrew Cumming Universit´eMcGill - Antoine Darveau-Bernier Universit´ede Montr´eal Orale Matt Dobbs Universit´eMcGill - Ren´eDoyon Universit´ede Montr´eal - Mike Duchesne Universit´eLaval Orale Patrick Dufour Universit´ede Montr´eal - Michael Eby Bishop's University - Mariam El-Amine Bishop's University - Gilles Fontaine Universit´ede Montr´eal - Jo¨elGaudreault C´egepde Sherbrooke - Marie-Lou Gendron-Marsolais Universit´ede Montr´eal Orale Cynthia Genest-Beaulieu Universit´ede Montr´eal - 1 Fran¸coisHardy Universit´ede -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.