The SAI Catalog of Supernovae and Radial Distributions of Supernovae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Revised View of the Canis Major Stellar Overdensity with Decam And
MNRAS 501, 1690–1700 (2021) doi:10.1093/mnras/staa2655 Advance Access publication 2020 October 14 A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars Downloaded from https://academic.oup.com/mnras/article/501/2/1690/5923573 by Consejo Superior de Investigaciones Cientificas (CSIC) user on 15 March 2021 Julio A. Carballo-Bello ,1‹ David Mart´ınez-Delgado,2 Jesus´ M. Corral-Santana ,3 Emilio J. Alfaro,2 Camila Navarrete,3,4 A. Katherina Vivas 5 and Marcio´ Catelan 4,6 1Instituto de Alta Investigacion,´ Universidad de Tarapaca,´ Casilla 7D, Arica, Chile 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, E-18080 Granada, Spain 3European Southern Observatory, Alonso de Cordova´ 3107, Casilla 19001, Santiago, Chile 4Millennium Institute of Astrophysics, Santiago, Chile 5Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile 6Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 782-0436 Macul, Santiago, Chile Accepted 2020 August 27. Received 2020 July 16; in original form 2020 February 24 ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230◦ <<255◦. -
Neutron Stars
Chandra X-Ray Observatory X-Ray Astronomy Field Guide Neutron Stars Ordinary matter, or the stuff we and everything around us is made of, consists largely of empty space. Even a rock is mostly empty space. This is because matter is made of atoms. An atom is a cloud of electrons orbiting around a nucleus composed of protons and neutrons. The nucleus contains more than 99.9 percent of the mass of an atom, yet it has a diameter of only 1/100,000 that of the electron cloud. The electrons themselves take up little space, but the pattern of their orbit defines the size of the atom, which is therefore 99.9999999999999% Chandra Image of Vela Pulsar open space! (NASA/PSU/G.Pavlov et al. What we perceive as painfully solid when we bump against a rock is really a hurly-burly of electrons moving through empty space so fast that we can't see—or feel—the emptiness. What would matter look like if it weren't empty, if we could crush the electron cloud down to the size of the nucleus? Suppose we could generate a force strong enough to crush all the emptiness out of a rock roughly the size of a football stadium. The rock would be squeezed down to the size of a grain of sand and would still weigh 4 million tons! Such extreme forces occur in nature when the central part of a massive star collapses to form a neutron star. The atoms are crushed completely, and the electrons are jammed inside the protons to form a star composed almost entirely of neutrons. -
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
The Kinematics of Warm Ionized Gas in the Fourth Galactic Quadrant Martin C
The Kinematics of Warm Ionized Gas in the Fourth Galactic Quadrant Martin C. Gostisha, Robert A. Benjamin (University of Wisconsin-Whitewater), L.M. Haffner (University of Wisconsin- Madison), Alex Hill (CSIRO), and Kat Barger (University of Notre Dame) Abstract: We present an preliminary analysis oF an on-going Wisconsin H-Alpha Mapper (WHAM) survey oF the Fourth quadrant oF the Galac>c plane in diffuse emission From [S II] 6716 A, covering the Fourth galac>c quadrant (Galac>c longitude = 270-360 degrees) and Galac>c latude |b| < 12 degrees. Because oF the high atomic mass and narrow thermal line widths oF sulFur (as compared to hydrogen or nitrogen, this emission line serves as the best tracer oF the kinemacs oF the warm ionized medium in the mid plane oF the Galaxy. We detect extensive emission at veloci>es as negave as -100 km/s indicang that we are seeing much Further into the center oF the Milky Way than was Found For the first quadrant. We discuss constraints on the velocity and ver>cal density structure oF this gas, and compare this distribu>on with what is observed in CO and HI surveys. This work was par>ally supported by the Naonal Science Foundaon’s REU program through NSF award AST-1004881. [SII] provides beNer velocity resolu3on than H-Alpha V The equaon, __________ LSR 40 30 30 gives us a physical value For the line widths oF both H-Alpha and [SII], varying only by the mass oF the individual atoms. Assuming that the gas is at a temperature oF 4 10 T=10 K, the velocity widths oF H-Alpha and [SII], respec>vely, are 20 0 km s-1 10 -10 Figure 2. -
Optical Observations of Pulsars: the ESO Contribution R.P
Figure 3: The normalised spectral energy distribution of 3 galaxies. From left to right we show a regular Ly-break galaxy (Fig. 2c), the “spiral” galaxy (Fig. 2d), and the very red galaxy from Figure 2e. The red continuum feature of the last two galaxies can be due to the Balmer/4000 Angstrom break or due to dust. Only one of these would be selected by the regular Ly-break selection technique, as the others are too faint in the optical (rest-frame UV). Acknowledgement References van Dokkum, P. G., Franx, M., Fabricant, D., Kelson, D., Illingworth, G. D., 2000, sub- Dickinson, M., et al, 1999, preprint, as- It is a pleasure to thank the staff at mitted to ApJ. troph/9908083. Steidel, C. C., Giavalisco, M., Pettini, M., ESO who contributed to the construc- Gioia, I., and Luppino, G. A., 1994, ApJS, tion and operation of the VLT and Dickinson, M., Adelberger, K. L., 1996, 94, 583. ApJL, 462, L17. ISAAC. This project has only been van Dokkum, P. G., Franx, M., Fabricant, D., Williams, R. E., et al, 2000, in prepara- possible because of their enormous ef- Kelson, D., Illingworth, G. D., 1999, ApJL, tion. forts. 520, L95. Optical Observations of Pulsars: the ESO Contribution R.P. MIGNANI1, P.A. CARAVEO 2 and G.F. BIGNAMI3 1ST-ECF, [email protected]; 2IFC-CNR, [email protected]; 3ASI [email protected] Introduction matic gamma-rays source Geminga, and ESO telescopes gave to the not yet recognised as an X/gamma-ray European astronomers the chance to Our knowledge of the optical emis- pulsar, was proposed. -
Abstracts Connecting to the Boston University Network
20th Cambridge Workshop: Cool Stars, Stellar Systems, and the Sun July 29 - Aug 3, 2018 Boston / Cambridge, USA Abstracts Connecting to the Boston University Network 1. Select network ”BU Guest (unencrypted)” 2. Once connected, open a web browser and try to navigate to a website. You should be redirected to https://safeconnect.bu.edu:9443 for registration. If the page does not automatically redirect, go to bu.edu to be brought to the login page. 3. Enter the login information: Guest Username: CoolStars20 Password: CoolStars20 Click to accept the conditions then log in. ii Foreword Our story starts on January 31, 1980 when a small group of about 50 astronomers came to- gether, organized by Andrea Dupree, to discuss the results from the new high-energy satel- lites IUE and Einstein. Called “Cool Stars, Stellar Systems, and the Sun,” the meeting empha- sized the solar stellar connection and focused discussion on “several topics … in which the similarity is manifest: the structures of chromospheres and coronae, stellar activity, and the phenomena of mass loss,” according to the preface of the resulting, “Special Report of the Smithsonian Astrophysical Observatory.” We could easily have chosen the same topics for this meeting. Over the summer of 1980, the group met again in Bonas, France and then back in Cambridge in 1981. Nearly 40 years on, I am comfortable saying these workshops have evolved to be the premier conference series for cool star research. Cool Stars has been held largely biennially, alternating between North America and Europe. Over that time, the field of stellar astro- physics has been upended several times, first by results from Hubble, then ROSAT, then Keck and other large aperture ground-based adaptive optics telescopes. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Observing List Evening of 2011 Dec 25 at Boyden Observatory
Southern Skies Binocular list Observing List Evening of 2011 Dec 25 at Boyden Observatory Sunset 19:20, Twilight ends 20:49, Twilight begins 03:40, Sunrise 05:09, Moon rise 06:47, Moon set 20:00 Completely dark from 20:49 to 03:40. New Moon. All times local (GMT+2). Listing All Classes visible above 2 air mass and in complete darkness after 20:49 and before 03:40. Cls Primary ID Alternate ID Con Mag Size Distance RA 2000 Dec 2000 Begin Optimum End S.A. Ur. 2 PSA Difficulty Optimum EP Open Collinder 227 Melotte 101 Car 8.4 15.0' 6500 ly 10h42m12.0s -65°06'00" 01:32 03:31 03:54 25 210 40 challenging Glob NGC 2808 Car 6.2 14.0' 26000 ly 09h12m03.0s -64°51'48" 21:57 03:08 04:05 25 210 40 detectable Open IC 2602 Collinder 229 Car 1.6 100.0' 520 ly 10h42m58.0s -64°24'00" 23:20 03:31 04:07 25 210 40 obvious Open Collinder 246 Melotte 105 Car 9.4 5.0' 7200 ly 11h19m42.0s -63°29'00" 01:44 03:33 03:57 25 209 40 challenging Open IC 2714 Collinder 245 Car 8.2 14.0' 4000 ly 11h17m27.0s -62°44'00" 01:32 03:33 03:57 25 209 40 challenging Open NGC 2516 Collinder 172 Car 3.3 30.0' 1300 ly 07h58m04.0s -60°45'12" 20:38 01:56 04:10 24 200 30 obvious Open NGC 3114 Collinder 215 Car 4.5 35.0' 3000 ly 10h02m36.0s -60°07'12" 22:43 03:27 04:07 25 199 40 easy Neb NGC 3372 Eta Carinae Nebula Car 3.0 120.0' 10h45m06.0s -59°52'00" 23:26 03:32 04:07 25 199 38 easy Open NGC 3532 Collinder 238 Car 3.4 50.0' 1600 ly 11h05m39.0s -58°45'12" 23:47 03:33 04:08 25 198 38 easy Open NGC 3293 Collinder 224 Car 6.2 6.0' 7600 ly 10h35m51.0s -58°13'48" 23:18 03:32 04:08 25 199 -
Arxiv:1802.07727V1 [Astro-Ph.HE] 21 Feb 2018 Tion Systems to Standard Candles in Cosmology (E.G., Wijers Et Al
Astronomy & Astrophysics manuscript no. XSGRB_sample_arxiv c ESO 2018 2018-02-23 The X-shooter GRB afterglow legacy sample (XS-GRB)? J. Selsing1;??, D. Malesani1; 2; 3,y, P. Goldoni4,y, J. P. U. Fynbo1; 2,y, T. Krühler5,y, L. A. Antonelli6,y, M. Arabsalmani7; 8, J. Bolmer5; 9,y, Z. Cano10,y, L. Christensen1, S. Covino11,y, P. D’Avanzo11,y, V. D’Elia12,y, A. De Cia13, A. de Ugarte Postigo1; 10,y, H. Flores14,y, M. Friis15; 16, A. Gomboc17, J. Greiner5, P. Groot18, F. Hammer14, O.E. Hartoog19,y, K. E. Heintz1; 2; 20,y, J. Hjorth1,y, P. Jakobsson20,y, J. Japelj19,y, D. A. Kann10,y, L. Kaper19, C. Ledoux9, G. Leloudas1, A.J. Levan21,y, E. Maiorano22, A. Melandri11,y, B. Milvang-Jensen1; 2, E. Palazzi22, J. T. Palmerio23,y, D. A. Perley24,y, E. Pian22, S. Piranomonte6,y, G. Pugliese19,y, R. Sánchez-Ramírez25,y, S. Savaglio26, P. Schady5, S. Schulze27,y, J. Sollerman28, M. Sparre29,y, G. Tagliaferri11, N. R. Tanvir30,y, C. C. Thöne10, S.D. Vergani14,y, P. Vreeswijk18; 26,y, D. Watson1; 2,y, K. Wiersema21; 30,y, R. Wijers19, D. Xu31,y, and T. Zafar32 (Affiliations can be found after the references) Received/ accepted ABSTRACT In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31=03=2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. -
Blue Straggler Stars in Galactic Open Clusters and the Effect of Field Star Contamination
A&A 482, 777–781 (2008) Astronomy DOI: 10.1051/0004-6361:20078629 & c ESO 2008 Astrophysics Blue straggler stars in Galactic open clusters and the effect of field star contamination (Research Note) G. Carraro1,R.A.Vázquez2, and A. Moitinho3 1 ESO, Alonso de Cordova 3107, Vitacura, Santiago, Chile e-mail: [email protected] 2 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina e-mail: [email protected] 3 SIM/IDL, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal e-mail: [email protected] Received 7 September 2007 / Accepted 19 February 2008 ABSTRACT Context. We investigate the distribution of blue straggler stars in the field of three open star clusters. Aims. The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the color magnitude diagram as blue straggler stars. Methods. We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in blue straggler stars, which are projected in the direction of the Perseus arm, and study their spatial distribution and the color magnitude diagram. Results. As expected, we find that a large portion of the blue straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of blue straggler stars in different population environments: open clusters, globular clusters, or dwarf galaxies. -
V2487 Oph 1998: a Post Nova in an Intermediate Polar
EPJ Web of Conferences 64, 07002 (2014) DOI: 10.1051/epjconf/20146407002 C Owned by the authors, published by EDP Sciences, 2014 V2487 Oph 1998: a post nova in an intermediate polar Margarita Hernanz1;a 1Institute of Space Sciences - ICE (CSIC-IEEC), Campus UAB, Fac. Ciències, C5 par 2a pl., 08193 Bellaterra (Barcelona), Spain Abstract. V2487 Oph (Nova Oph 1998) is a classical nova that exploded in 1998. XMM-Newton observations performed between 2 and 9 years after the explosion showed emission related to restablished accretion, and indicative of a magnetic white dwarf. The spectrum looks like that of a cataclysmic variable of the intermediate polar type. Anyway, we don’t have yet a definitive confirmation of the intermediate polar character, through determination of spin and orbital periods. Although it is not the first nova exploding in a magnetic white dwarf, it is always challenging to reach explosive conditions when a stan- dard accretion disk can’t be formed, because of the magnetic field. In addition, V2487 Oph has been the first nova where a detection of X-rays - in the host binary system - has been reported prior to its eruption, in 1990 with the ROSAT satellite. V2487 Oph has been also detected in hard X-rays with INTEGRAL/IBIS and RXTE/PCA. Last but not least, V2487 Oph has been identified as a recurrent nova in 2008, since a prior eruption in 1900 has been reported through analysis of Harvard photographic plates. Therefore, it is expected to host a massive white dwarf and be a candidate for a type Ia supernova explo- sion. -
An Observational Argument Against Accretion in Magnetars
Astronomy & Astrophysics manuscript no. start c ESO 2020 September 30, 2020 An observational argument against accretion in magnetars V.Doroshenko1; 2, A. Santangelo1, V. F. Suleimanov1; 2; 3, and S. S. Tsygankov4; 2 1 Institut für Astronomie und Astrophysik, Sand 1, 72076 Tübingen, Germany 2 Space Research Institute of the Russian Academy of Sciences, Profsoyuznaya Str. 84/32, Moscow 117997, Russia 3 Astronomy Department, Kazan (Volga region) Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russia 4 Department of Physics and Astronomy, FI-20014 University of Turku, Finland September 30, 2020 ABSTRACT The phenomenology of anomalous X-ray pulsars is usually interpreted within the paradigm of very highly magnetized neutron stars, also known as magnetars. According to this paradigm, the persistent emission of anomalous X-ray pulsars (AXPs) is powered by the decay of the magnetic field. However, an alternative scenario in which the persistent emission is explained through accretion is also discussed in literature. In particular, AXP 4U 0142+61 has been suggested to be either an accreting neutron star or a white dwarf. Here, we rule out this scenario based on the the observed X-ray variability properties of the source. We directly compare the observed power spectra of 4U 0142+61 and of two other magnetars, 1RXS J170849.0−400910 and 1E 1841−045 with that of the X-ray pulsar 1A 0535+262, and of the intermediate polar GK Persei. In addition, we include a bright young radio pulsar PSR B1509-58 for comparison. We show that, unlike accreting sources, no aperiodic variability within the expected frequency range is observed in the power density spectrum of the magnetars and the radio pulsar.