To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris

Total Page:16

File Type:pdf, Size:1020Kb

To Secure Long-Term Spaceflight Safety and Orbital Sustainability for the Benefit of Future Generations the Impact of Space Debris To secure long-term spaceflight safety and orbital sustainability for the benefit of future generations The impact of space debris Our growing reliance on satellite services 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year very day billions of people around the world rely One of the key ways to reduce the risk of collision in on data from satellites to go about their lives. We orbit is to remove potential threats. Designing and Eexchange messages, talk to family and friends, building a satellite to identify, track, rendezvous, dock check the weather, manage finances, and undertake and de-orbit a piece of debris is an extraordinarily numerous other tasks. In addition, satellites are used difficult technical task on its own. However, developing to manage and mitigate natural disasters, monitor the an orbital debris removal business involves more than Earth’s climate and well-being and provide information just creating the technical solution. We now need a for national security. In short, without satellite data, the consistent global effort to shape regulations and a lives of people around the world would be dramatically vibrant ecosystem that assures a business case. At different. And now the source of this data is at growing Astroscale we are working these important tasks risk of being destroyed by space debris. – developing the technologies, working with the policymakers and closing the business case – that will We don’t see these satellites and the millions of pieces allow for a long-term orbital debris solution. of debris in orbit, so it feels as if that environment is disconnected from daily life. However, just as we need to care for our rivers, lakes and oceans, we need to care for the critical natural resource of low Earth orbit (LEO). Humankind is now approaching an era in which 10 billion people will be sharing this planet. The benefits we derive from satellites will help to shape this next generation and we must assure that our orbits are sustainable in order to have an Earth that is sustainable as well. The solution Astroscale is developing two product families: End-of-Life Services by Astroscale (ELSA) Prepare future satellites with a docking mechanism before launch that will allow 1 for eventual removal from orbit by a servicing mission. Assuring all satellites have a means of deorbit will improve long-term orbital sustainability and ensure safety of future satellite operations. Active Debris Removal (ADR) Removing debris that is currently in orbit requires a “non-cooperative” solution as 2 this debris was not prepared for deorbit before launch. Astroscale is partnering with national space agencies and international organisations to research and develop missions that incorporate innovative solutions for docking and removal of environmentally critical debris such as used rocket upper stages and defunct satellites. The primary customers for this service will be space agencies. 2 For the sustainability of space The impact of space debris 1 active satellite 1957 1,950 active satellites 2019 20,000+ active satellites by 2030 67,000 collision alerts per year The technology Our technology demonstration mission, ELSA-d is scheduled to be launched in 2020 and will prove our capabilities in providing an end-to-end solution for space debris removal, including: Find and Approach Satellite Proximity Operations 1 Optimised approach for locating 2 Relative navigation to rendezvous and making in-situ observations with object using optical sensors and of object orbit and characteristics distributed data processing Docking Deorbit 3 Magnetic docking with client 4 Use of advanced Collision satellite using ferromagnetic plate Avoidance Manoeuvres, to pacify and deorbit debris Ground segment operations for in-orbit servicing In 2018, Astroscale UK was part of £4 million grant from the UK Government to lead the establishment of a National In-Orbit Servicing Control Facility at the Satellite Applications Catapult in Harwell, Oxfordshire. The facility will support advanced robotics activities in the hostile environment of space, specifically enabling the provision of a commercial service for deorbiting small satellites. The new facility will initially control Astroscale’s pioneering ELSA-d mission, the first project to demonstrate the core rendezvous, docking and deorbit technologies used by the ELSA program. www.astroscale.com 3 About Astroscale Astroscale has a growing team of nearly 100 people – 80% of whom are engineers. All share a passion to secure long-term spaceflight safety and bring an international mindset to address this growing global problem. Astroscale is headquartered in Japan, and has offices in the UK, the US and Singapore. Our highly experienced and professional team have joined us from different backgrounds, including space agencies, government ministries, start-ups and the aerospace industry from around the globe. Astroscale is uniquely positioned to lead the international market in solving the technical, policy and business case concerns related to the increasing hazard of space debris. Japan United Kingdom United States Singapore HEADQUARTERS 1-16-4 Kinshi Sumida-ku Harwell Innovation Centre 1401 Lawrence St Marina One East Tower Tokyo, 130-0013 Curie Ave, Didcot Ste 1600, Denver 018936 Japan OX11 OQX, U.K CO 80202, U.S.A Singapore TEL: +81-3-6658-8175 TEL: +44-1235-395359 TEL: +1-720-325-1191 TEL: +65-6911-6978 @astroscale_ facebook.com/Astroscale linkedin.com/company/Astroscale astroscale.
Recommended publications
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • Astroscale’S Vision for Active Debris Removal Services
    Towards Global Space Sustainability – Astroscale’s Vision for Active Debris Removal Services Speaker Dr Jason Forshaw MEng MS (Stanford) PhD CEng MIEEE SMAIAA European R&D Manager, Astroscale Holdings United Nations World Space Forum Vienna, Austria 20th November 2019 ©Astroscale Space Debris Threatens Space Sustainability 1950 2018 Astroscale: An International Company Solving a Global Problem • Astroscale’s mission is to secure long-term spaceflight safety and orbital sustainability for the benefit of future generations • Our services include End of Life (including large constellations) and Active Debris Removal Growing Team, Increased Fundraising and Expanded Global Presence 80 140 D2: $32M 70 72 120 Funds raised: 60 55 D: $50M $140 million 100 50 Astroscale Singapore Astroscale Japan - Tokyo Astroscale UK - Harwell May 2013 May 2015 May 2017 Global staff: 80 40 95 people 60 30 32 C: $27M Staff members Staff 20 20 40 15 B: $20M 10 5 20 US$) (in raised Money A: $7M 1 Astroscale US – Denver 0 April 2019 0 2013 2014 2015 2016 2017 2018 2019 2020 Personnel Fundraising ©︎Astroscale 3 Astroscale is actively addressing the orbital debris problem Business Case Technology & Policy & Capability Regulation Business – Business Lines End of Life (EOL) Active Debris Removal (ADR) Services “Don’t add any more debris” “Remove debris that is already there” Potential customers Constellations, Private Satellite Operators Governments, International framework Target Objects - Satellites that have failed in orbit or reached - Environment Critical Objects end of operational lifetime - Existing debris - 50~500kg - 500kg+ - Business continuity and maximize revenue - Demonstrate commitment to orbital - Adhere to best practices and public sustainability demands - Assure spaceflight safety for all operators Rationale Global Responsibility Technical concept Semi-cooperative approach and capture Non-cooperative approach and capture ©︎Astroscale 5 Business – Market Demand • Astroscale is tracking 120+ 80 satellite constellations.
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Space Debris
    IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low
    [Show full text]
  • Orbiting Debris: a Space Environmental Problem (Part 4 Of
    Orbiting Debris: A Since Environmential Problem ● 3 Table 2--of Hazardous Interference by environment. Yet, orbital debris is part of a Orbital Debris larger problem of pollution in space that in- cludes radio-frequency interference and inter- 1. Loss or damage to space assets through collision; ference to scientific observations in all parts of 2. Accidental re-entry of space hardware; the spectrum. For example, emissions at ra- 3. Contamination by nuclear material of manned or unmanned spacecraft, both in space and on Earth; dio frequencies often interfere with radio as- 4. Interference with astronomical observations, both from the tronomy observations. For several years, ground and in space; gamma-ray astronomy data have been cor- 5. Interference with scientific and military experiments in space; rupted by Soviet intelligence satellites that 14 6. Potential military use. are powered by unshielded nuclear reactors. The indirect emissions from these satellites SOURCE: Space Debris, European Space Agency, and Office of Technology As- sessment. spread along the Earth’s magnetic field and are virtually impossible for other satellites to Earth. The largest have attracted worldwide escape. The Japanese Ginga satellite, attention. 10 Although the risk to individuals is launched in 1987 to study gamma-ray extremely small, the probability of striking bursters, has been triggered so often by the populated areas still finite.11 For example: 1) Soviet reactors that over 40 percent of its available observing time has been spent trans- the U.S.S.R. Kosmos 954, which contained a 15 nuclear power source,12 reentered the atmos- mitting unintelligible “data.” All of these phere over northwest Canada in 1978, scatter- problem areas will require attention and posi- ing debris over an area the size of Austria; 2) a tive steps to guarantee access to space by all Japanese ship was hit in 1969 by pieces of countries in the future.
    [Show full text]
  • IADC Space Debris Mitigation Guidelines
    IADC-02-01 Revision 2 Mar 2020 IADC Space Debris Mitigation Guidelines Issued by IADC Steering Group and Working Group 4 Table of Contents Table of Contents .................................................................................................................. 1 Revision History .................................................................................................................... 2 List of Abbreviations .............................................................................................................. 3 1 Scope ............................................................................................................................. 6 2 Application ...................................................................................................................... 6 3 Terms and definitions ..................................................................................................... 6 3.1 Space Debris ........................................................................................................... 6 3.2 Spacecraft, Launch Vehicles, and Orbital Stages .................................................... 6 3.3 Orbits and Protected Regions ................................................................................. 7 3.4 Mitigation Measures and Related Terms ................................................................. 8 3.5 Operational Phases ................................................................................................. 8 4 General Guidance .........................................................................................................
    [Show full text]
  • Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program
    Trends in Small Satellite Technology and the Role of the NASA Small Spacecraft Technology Program Final Update to the NASA Advisory Committee Technology, Innovation and Engineering Committee March 28, 2017 Bhavya Lal, Asha Balakrishnan, Alyssa Picard, Ben Corbin, Jonathan Behrens, Ellen Green, Roger Myers Reviewers: Brian Zuckerman, Mike Yarymovych, Iain Boyd, Malcolm MacDonald Project Goal Given investments outside STMD, and NASA’s mission needs, what is the “the appropriate, discriminating role for STMD vis-à-vis all the other organizations that are developing small satellite technology?” 2 Overall Approach • Examined smallsat developments • Scope – State-of-the-art and activities outside – STMD’s Small Spacecraft Technology STMD Program (SSTP) supplemented by other – Evolution of the ecosystem: players STMD efforts and markets – Did not conduct an evaluation – Drivers of future activities: • No comment on adequacy of funding infrastructure, policies, investment levels • Analyzed STMD’s current and • Definition of a small spacecraft or emerging smallsat portfolio smallsat • Identified NASA’s small spacecraft – Considered several metrics – mass, cost, innovation approach (“lean needs, both user driven (tech satellite”) pull) and technology driven (tech – Settled on mass with upper limit ~200 push) kg • Identified gaps and made • With exceptions up to 500 kg as needed recommendations 3 Data Sources • Reviewed the literature • Conducted 57 stakeholder – National Academy of Sciences discussions CubeSat Report (2016) – Industry representatives
    [Show full text]
  • World's First Commercial Satellite Tracking Sub
    FOR IMMEDIATE RELEASE World’s First Commercial Satellite Tracking Sub-Millimeter Sized Debris IDEA OSG 1 Scheduled to Launch on November 28 November 2, 2017 – ASTROSCALE PTE. LTD. (ASTROSCALE), a company with a mission to secure long-term spaceflight safety by developing debris monitoring and removal services, will launch IDEA OSG 1 on November 28 at 14:41:46 (JST) from Russia’s Vostochny Cosmodrome with the Russian State Space Corporation Roscosmos meteorology mission Meteor-M №2-1. Shipped from Japan in the end of September, IDEA OSG 1, the world’s first in-situ space debris monitoring microsatellite in low- Earth orbit, now awaits checkout before rocket integration at the launch site. As the first private company to attempt to mitigate space debris through technology, business model, and regulatory solutions, ASTROSCALE plans to contribute to the sustainable use of space. Founded in 2013, ASTROSCALE’s first satellite took only two and half years to manufacture from its conception. The microsatellite will be placed in an elliptical low-Earth orbit at an altitude of 600 - 800km, and will monitor the size and position of space debris to create debris distribution maps to better understand the space environment. The launch details of IDEA OSG 1 are as follows: Launch Date: November 28, 2017 (JST) Launch Time: 14:41:46 (JST) Launch Station: Vostochny Cosmodrome, Russia *Launch date and time are subject to change. IDEA OSG 1 Official Sponsors OSG Corporation https://www.osg.co.jp/en/ POCARI SWEAT (Otsuka Pharmaceutical Co., Ltd.) https://www.otsuka.co.jp/en/product/pocarisweat/ Copyright © ASTROSCALE Pte.
    [Show full text]
  • Astroscale Awarded Grand Prix at the UNESCO Netexplo Innovation Forum 2020
    FOR IMMEDIATE RELEASE Astroscale Awarded Grand Prix At The UNESCO Netexplo Innovation Forum 2020 September 22, 2020 - Astroscale Holdings Inc. (“Astroscale”), the market-leader in securing long-term ​ ​ orbital sustainability, was today awarded Grand Prix during the UNESCO Netexplo Innovation Forum 2020, out of 10 breakthrough digital innovations which were selected for their disruptive potential. Netexplo, an independent observatory that studies the impact of digital tech on society and business, has been a UNESCO partner since 2011. This year’s UNESCO Netexplo Innovation Forum showcased 10 breakthrough digital innovations with the potential of profound and lasting impact on digital society. The innovations were identified worldwide through a year-long search by the Netexplo University Network, made up of globally renowned universities in the technology domain. Astroscale won Grand Prix for its innovative satellite technologies that will reduce orbital debris and support the long-term, sustainable use of space. “We are truly honored to be named Netexplo Grand Prix 2020, and I share this win with everyone on our team working hard on the technology, policy and business case challenges of this complex, global issue,” said Nobu Okada, Founder & CEO. “I am encouraged to see what’s happening in Earth’s orbits as having a profound and positive impact on society. Right now COVID-19 and countless environmental catastrophes are wreaking havoc all over the globe, and we’re committed to stopping another potential disaster from unfolding over our heads.” The rise of large commercial satellite constellations in low Earth orbit (LEO) means that the threat of a potential collision or break-up in key orbits will escalate.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Assessment of the Legal Regime of Mining of Minerals in Outer Space
    United Nations/South Africa Symposium on Basic Space Technology “Small Satellite Missions for Scientific and Technological Advancement”, Stellenbosch, South Africa, 11 – 15 December 2017 Africa in Space: Legal Issues and Responsibilities Related to Space Technology Development Programmes Olusoji Nester JOHN African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E), Nigeria, [email protected], +2348034235704 1. INTRODUCTION Outer Space has always fascinated man, beginning from the Biblical days of the building of the Tower of Babel to this very Century in which it is particularly important in his everyday life. So, man has been making attempt to explore, he has explored and he is still exploring this important domain. This will remain so even to the end the days of the last man on Earth. The early vision of space leaders, particularly the U.S and Soviet Union, was space for prestige and supremacy. That vision was not different from that of the people of Babel: “Come, let us build ourselves ... a tower whose top is in the heavens. Let us make a name for ourselves …” (Genesis 11 The beginning of Space exploration was characterized by “State- selfishness” and unfriendly-race. Soviet Union made several achievements first: • launched Sputnik I in October 1957 • Cosmonaut Yuri Gagarin of Soviet Union became the first human being in space on April 12, 1961 Soviet Union leadership claimed that its first capabilities were evidence of its overall superiority These first-in-all achievements contributed to significant increase in Soviet Union national prestige vi- a-viz the U.S Kennedy and his advisers felt the need a to beat Soviet Union, to re-establish U.S prestige and demonstrate its leadership.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]