Classical Biological Control of Arthropods in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Classical Biological Control of Arthropods in Australia Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. This was indicative of the emphasis to be placed on biological control in Australia for the foreseeable future and was logical when one considers the potential targets for this approach amongst the many exotic pests of the introduced plants on which Australia still depends almost entirely for its agricultural productivity. Biological control has continued as a mainstay of pest management to the present time, with an impressive number of successes over the years. The first comprehensive review of biological control projects in Australia (which also included those in Papua New Guinea) was that of Wilson (1960). This covered attempts against 53 arthropod pests or groups of pests and 12 weeds. There followed coverage of the world scene by Clausen (1978a), which added brief accounts on Australian projects. Worldwide projects on weeds have been regularly summarised in an abbreviated form by M.H. Julien (Julien and Griffiths 1999) but a comprehensive account of the entire range of arthropod projects in Australia up to the present time, now totalling 98 arthropod pests or groups of pests, has been sorely needed for some time. The authors are to be congratulated on their dedication and persistence in amassing the extensive and scattered information required for the task. Congratulations are also due to the Australian Centre for International Agricultural Research (ACIAR), the publisher of this book. This project further extends our close collaboration on biological control activities in the oceanic Pacific and Southeast Asia. ACIAR has already published an impressive number of volumes relevant to the development of significant programs (Li Li-ying et al. 1997; Waterhouse 1993a,b, 1994, 1997, 1998; Waterhouse and Norris 1987, 1989; Waterhouse et al. 1999; Klein Koch and Waterhouse 2001; Morris and Waterhouse 2001). One spectacular success has been the effective control of a serious defoliator, the 3 Back Forward Contents CLASSICAL BIOLOGICAL CONTROL OF ARTHROPODS IN AUSTRALIA Arthropod index banana skipper in Papua New Guinea. This has, so far, halted its spread to General index Australia, with an extraordinarily high estimated benefit–cost ratio of 607:1. This is an excellent example of ACIAR’s policy of taking pre- List of targets emptive action to help an overseas country and, at the same time, Australia, by dealing with a threat to Australian agriculture before it reaches our shores. Classical biological control has the capacity to yield extensive and enduring returns in pest management, though success is not always guaranteed. In their brief overview, the authors estimate an overall success rate of about two-thirds for all projects. This in itself represents a remarkable return on the scientific investment made. I warmly commend this volume not only for the wealth of information it contains, but also as an invaluable record of what can and has been achieved by this approach and as an indication of the opportunities that still exist to extend and improve the approach further for Australia’s benefit. Jim Cullen Chief, Division of Entomology CSIRO, Canberra 4 Back Forward Arthropod index General index List of targets Contents Foreword 3 A Tribute 7 Abstract 8 Acknowledgments 9 Introduction 11 List of targets 17 List of tables 20 Arthropod pests and natural enemies released 25 Details of biological control projects 99 Overview 437 References 441 Arthropod index 503 General index 546 5 Back Forward Contents Arthropod index General index List of targets 6 Back Forward Contents Arthropod index General index A Tribute List of targets IN HIS retirement from 1981 to 2000, the late Dr Doug Waterhouse authored or co-authored 12 books on the biological control, distribution and importance of pests and weeds. These publications are of immense importance and relevance to the objectives of both CSIRO Entomology and ACIAR as they promote the economic, social and environmental benefits to be had with appropriate management of insects. His texts have drawn together relevant information available from as many sources as possible, enabling students and research workers to locate easily, most or all of the information on pests and weeds of Pacific and Southeast Asian countries. The books are essential for planning future biological control projects in the region. This most recent book by Dr Waterhouse, Classical Biological Control of Arthropods in Australia co-authored with Dr Sands, is the last in the series on regional biological control programs. It covers the history until 1999, of arthropod biological control introductions into Australia, and updates information on biological control projects carried out since the publication by Wilson (1960). Entomologists, including the scientists affiliated with CSIRO Entomology, are deeply indebted to Dr Waterhouse for the contributions he has made in all the books published after his retirement. They will be referred to for years to come, guiding new initiatives and recording part of the history of safely and successfully controlling pests and weeds, by classical biological control in Australia and the neighbouring developing nations. R.J. Clements Director, ACIAR 7 Back Forward Contents Arthropod index General index Abstract List of targets AN ACCOUNT is provided of attempts at biological control of arthropod pests in Australia. Ninety-eight pests or groups of pests have been involved, totalling some 150 species, most of which are exotic. Some 70 were targetted in specific projects. The pests are listed alphabetically under Collembola (1), Hemiptera (56), Thysanoptera (1), Orthoptera (2), Coleoptera (9), Diptera (7), Lepidoptera (13), Hymenoptera (4), Acari (4) and Diplopoda (1). In addition to a summary table of results, a short dossier on each pest species or group provides (a) a precis of the outcomes, together with basic data on biology and pest status, (b) information on native natural enemies and (c) an account of the attempt(s) at biological control and the biology of the most important natural enemies. Without recent evaluations it is often not possible to assess accurately the level of successful control, but a general overview indicates that about 30 of the target pests are very well controlled and a further 20 are no longer important pests, indicating an overall success rate for target pests of about two-thirds. With the exception of the dung-breeding bush fly, native pests have not proved susceptible to classical biological control. 8 Back Forward Contents Arthropod index General index Acknowledgments List of targets MANY COLLEAGUES within CSIRO Entomology, State Departments of Agriculture and universities have provided valuable information and comment, often providing more accurate and up-to-date accounts of the various projects than is available from publications. Although it is not possible to acknowledge all of the many individuals involved, very special thanks are due to Dr M. Carver for much unpublished information on the aphid pests listed. Mr D. Smith of the Queensland Department of Primary Industries (QDPI), Nambour, Queensland provided most valuable information on scales and mealybugs. Mr J. Feehan supplied unpublished information on the distribution and impact of dung beetles and this was supplemented by Drs M. Tyndale-Biscoe, T.J. Ridsdill-Smith and J.N. Mathiessen. Others in CSIRO Entomology include Drs G.H. Baker, J. Daly, P. Greenslade, B.H. Halliday, G.A. Macqueen, W. Milne, R.J. Milner, L.A. Mound, K.R. Norris, J.L. Readshaw, J.P. Spradbery, R.W. Sutherst and K.G. Wardhaugh. Valuable inputs were also provided by Queensland G.K.
Recommended publications
  • ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera
    ELIZABETH LOCKARD SKILLEN Diversity of Parasitic Hymenoptera (Ichneumonidae: Campopleginae and Ichneumoninae) in Great Smoky Mountains National Park and Eastern North American Forests (Under the direction of JOHN PICKERING) I examined species richness and composition of Campopleginae and Ichneumoninae (Hymenoptera: Ichneumonidae) parasitoids in cut and uncut forests and before and after fire in Great Smoky Mountains National Park, Tennessee (GSMNP). I also compared alpha and beta diversity along a latitudinal gradient in Eastern North America with sites in Ontario, Maryland, Georgia, and Florida. Between 1997- 2000, I ran insect Malaise traps at 6 sites in two habitats in GSMNP. Sites include 2 old-growth mesic coves (Porters Creek and Ramsay Cascades), 2 second-growth mesic coves (Meigs Post Prong and Fish Camp Prong) and 2 xeric ridges (Lynn Hollow East and West) in GSMNP. I identified 307 species (9,716 individuals): 165 campoplegine species (3,273 individuals) and a minimum of 142 ichneumonine species (6,443 individuals) from 6 sites in GSMNP. The results show the importance of habitat differences when examining ichneumonid species richness at landscape scales. I report higher richness for both subfamilies combined in the xeric ridge sites (Lynn Hollow West (114) and Lynn Hollow East (112)) than previously reported peaks at mid-latitudes, in Maryland (103), and lower than Maryland for the two cove sites (Porters Creek, 90 and Ramsay Cascades, 88). These subfamilies appear to have largely recovered 70+ years after clear-cutting, yet Campopleginae may be more susceptible to logging disturbance. Campopleginae had higher species richness in old-growth coves and a 66% overlap in species composition between previously cut and uncut coves.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Cambridge University Press 978-1-107-11607-8 — a Natural History of Ladybird Beetles M. E. N. Majerus , Executive Editor H. E. Roy , P
    Cambridge University Press 978-1-107-11607-8 — A Natural History of Ladybird Beetles M. E. N. Majerus , Executive Editor H. E. Roy , P. M. J. Brown Index More Information Index 2-isopropyl-3-methoxy-pyrazine, 238 281, 283, 285, 287–9, 291–5, 297–8, 2-phenylethylamine, 237 301–3, 311, 314, 316, 319, 325, 327, 329, 335 abdomen, 17, 20, 22, 24, 28–9, 32, 38, 42, 110, Adalia 4-spilota,80 114, 125, 128, 172, 186, 189, 209–10, Adalia conglomerata, 255 218 adaline, 108, 237, 241 Acacia, 197, 199 adalinine, 237 acaricides, 316 adelgids, 29, 49, 62, 65, 86, 91, 176, 199, 308, Acaridae, 217 310, 322 Acarina, 205, 217 Adonia, 44, 71 Acer pseudoplatanus, 50, 68, 121 aggregations, 163, 165, 168, 170, 178, 184, Acraea, 228, 297, 302 221, 312, 324 Acraea encedana, 302 Aiolocaria, 78, 93, 133, 276 Acraea encedon, 297, 302 Aiolocaria hexaspilota,78 Acyrthosiphon nipponicum, 101 Aiolocaria mirabilis, 133, 276 Acyrthosiphon pisum, 75, 77, 90, 92, 97–101, albino, 273 116, 239 Alces alces,94 Adalia, 5–6, 10, 22, 34, 44, 64, 70, 78, 80, 86, Aleyrodidae, 91, 310 123, 125, 128, 130, 132, 140, 143, 147, alfalfa, 119, 308, 316, 319, 325 159–60, 166–7, 171, 180–1, 218, 222, alimentary canal, 29, 35, 221 234, 237, 239, 241, 255, 259–60, 262, alkaloids, x, 99–100, 195–7, 202, 236–9, 241–2, 269, 279, 281, 284, 286, 298, 311, 325, 245–6 327, 335 Allantonematidae, 220 Adalia 10-punctata, 22, 70, 80, 86, 98–100, anal cremaster, 38, 40 104, 108, 116, 132, 146–7, 149, Anatis, 4, 17, 23, 41, 44, 66, 76, 89, 102, 131, 154, 156, 160, 174, 181–3, 188, 148, 165, 186, 191, 193,
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Pear Sawfly Caliroa Cerasi Order Hymenoptera, Family Tenthredinidae; Common Sawflies Introduced Pest
    Pests of Trees and Shrubs Pear sawfly Caliroa cerasi Order Hymenoptera, Family Tenthredinidae; common sawflies Introduced pest Host plants: Cherry, cotoneaster, hawthorn, mountain- ash, pear and plum Description: Adult sawflies are 5–8 mm long, black and yellow, and stout bodied. Larvae are slimy, slug-like, and shiny olive-green to blackish in color. They are 12 mm long when full grown. Life history: Adults emerge early in June and lay single eggs on leaf undersides. Larvae appear in June, feed for about a month, then drop to the soil to pupate. A second generation can begin in early August. Overwintering: Prepupae in the soil. Damage symptoms: Larvae feed on upper leaf surfaces, Scorched leaves caused by pear sawfly larva defoliation leaving only the leaf veins. Heavy defoliation gives the damage. (189) tree a scorched appearance, and leaves may drop prema- Photo: Jeff Hahn turely. Severe defoliation can adversely affect tree health. Monitoring: Look for black, slug-like larvae feeding on the upper surface of leaves in June and again in August, and look for their damage on the leaves. Physical control: Small populations of larvae can be removed by hand and destroyed. Chemical control: Horticultural oils and insecticidal soaps are very effective against larvae. Biological control: No reports of natural enemies Plant mortality risk: Low Biorational pesticides: azadirachtin, horticultural oil, insecticidal soap, pyrethrins, spinosad Conventional pesticides: acephate, bifenthrin, carbaryl, Leaf damage caused by pear sawfly larvae. (188) chlorpyrifos (nursery only), cyfluthrin, deltamethrin, Photo: Whitney Cranshaw fluvalinate, imidacloprid, lambda-cyhalothrin, malathion, permethrin Leaf damage caused by young, pear sawfly larvae.
    [Show full text]
  • San Jose Scale and Its Natural Enemies: Investigating Natural Or Augmented Controls
    California Tree Fruit Agreement Research Report 2002 SAN JOSE SCALE AND ITS NATURAL ENEMIES: INVESTIGATING NATURAL OR AUGMENTED CONTROLS Project Leaders: Kent M. Daane Cooperators: Glenn Y. Yokota, Walter J. Bentley, Karen Sime, and Brian Hogg ABSTRACT San Jose scale (SJS) and its natural enemies were studied from 1999 through 2002. Natural populations were followed in stone fruit and almond blocks, with orchard management practices divided into “conventional” and “sustainable” practices, based on dormant and in-season insecticide use. Results generally show higher fruit damage at harvest-time in sustainably managed fields, although, these results are not consistent among orchards and exceptions to this pattern were found. In conventionally managed blocks, later harvest dates resulted in higher SJS fruit damage, although this did not hold true in sustainably managed orchards. Results from SJS pheromone-baited traps show a predominant seasonal pattern of SJS densities progressively increasing and parasitoid (Encarsia perniciosi) densities progressively decreasing. These data are discussed with respect to SJS fruit damage and parasitoid establishment and efficiency. SJS and parasitoid sampling methodology and distribution were investigated. Comparing SJS pheromone trap data to numbers of crawlers on double-sided sticky tape and SJS infested fruit at harvest show a significant correlation between pheromone trap counts of SJS males and numbers of SJS crawlers. Results suggest that there is a small window in the season (April-May) when sticky tape provides important information on crawler abundance and damage. Results show a negative correlation between the early season abundance of Encarsia (as measured by pheromone traps) and SJS damage at harvest. These results suggest that early-season ratios of parasitoid : SJS can not be used to predict fruit damage or biological control (these data require more analysis).
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Bionomics of Chilocorus Infernalis Mulsant, 1853 (Coleoptera
    doi:10.14720/aas.2019.113.1.07 Original research article / izvirni znanstveni članek Bionomics of Chilocorus infernalis Mulsant, 1853 (Coleoptera: Coccinellidae), a predator of San Jose scale, Diaspidiotus perniciosus (Comstock, 1881) under laboratory conditions Razia RASHEED1*, A.A. BUHROO1 and Shaziya GULL1 Received July 23, 2018; accepted January 03, 2019. Delo je prispelo 23. julija 2018, sprejeto 03. januarja 2019. ABSTRACT IZVLEČEK The bionomics of Chilocorus infernalis Mulsant, 1853, a BIONOMIJA VRSTE Chilocorus infernalis Mulsant, 1853 natural enemy of San Jose scale, was studied under laboratory (Coleoptera: Coccinellidae), PLENILCA AMERIŠKEGA conditions (26 ± 2˚C, and 65 ± 5% relative humidity). The KAPARJA (Diaspidiotus perniciosus (Comstock, 1881)) V eggs were deposited in groups and on average 45.68 ± 24.70 LABORATORIJSKIH RAZMERAH eggs were laid by female. Mean observed incubation period was 6.33 ± 1.52 days. Four instar grubs were observed, and Bionomija vrste Chilocorus infernalis Mulsant, 1853, mean duration of all four grubs was found to be 19.98 days. naravnega sovražnika ameriškega kaparja, je bila preučevana The pupal stage lasted for 8.00 ± 0.50 days and after adults v laboratorijskih razmerah (26 ± 2˚C in 65 ± 5 % relativne emerged out. zračne vlažnosti). Samice plenilca so jajčeca odlagale v skupinah, v poprečju 45,68 ± 24,70 jajčec na samico. V Key words: bionomics; natural enemies; San Jose scale; povprečju so se ličinke razvile iz jajčec v 6,33 ± 1,52 dneh. incubation period; larval instars Ugotovljene so bile štiri larvalne stopnje, katerih povprečna življenska doba je bila 19,98 dni. Razvojni štadij bube je trajal 8,00 ± 0,50 dni, nakar so se izlegli imagi.
    [Show full text]
  • Olfactory Attraction of the Larval Parasitoid, Hyposoter Horticola, to Plants Infested with Eggs of the Host Butterfly, Melitaea Cinxia Author(S): Marcela K
    Olfactory Attraction of the Larval Parasitoid, Hyposoter horticola, to Plants Infested with Eggs of the Host Butterfly, Melitaea cinxia Author(s): Marcela K. Castelo , Saskya van Nouhuys and Juan C. Corley Source: Journal of Insect Science, 10(53):1-16. 2010. Published By: University of Wisconsin Library DOI: http://dx.doi.org/10.1673/031.010.5301 URL: http://www.bioone.org/doi/full/10.1673/031.010.5301 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science: Vol. 10 | Article 53 Castelo et al. Olfactory attraction of the larval parasitoid, Hyposoter horticola, to plants infested with eggs of the host butterfly, Melitaea cinxia Marcela
    [Show full text]
  • Entomology Research Recommendations
    ENTOMOLOGY RESEARCH FINDINGS/ RECOMMENDATIONS Division of Crop Protection 01. Research Findings of Research based on Sugarcane Woolly Aphid (SWA); Ceratovacuna lanigera (Homoptera: Aphididae) i. Natural enemy spectrum of SWA includes only arthropod predators and six species have been identified (Wanasinghe et al; 2012). - Dipha aphidivora (Lepidoptera: Pyralidae) - Micromus sp. (Neuroptera: Hemorabiidae) - Eupeodes sp. (Diptera: Syrphidae) - Micraspis discolor (Coleoptera: Coccinelidae) - Synonycha sp. (Coleoptera: Coccinelidae) - Micraspis allardi (Coleoptera: Coccinelidae) Reference: - VKASM Wanasinghe, NC Kumarasinghe and KMG Chanchala (2012). Natural Enemies of Sugarcane Woolly Aphid (Ceratovacuna lanigera): A survey in Passara, Sri Lanka. Proceeding of the forth symposium on plantation crop research, pp 163-170 (Annex 01). ii. Variations of population density of the three natural predators of SWA According to the data collected to find out the variations of population density of the three natural predators of SWA (Dipha aphidivora, Micromus sp. and unidentified Syrphid fly larva) from January 2012 to December 2014 indicated that, Dipha aphidivora and Micromus sp. were recorded throughout the sampling period. Peak populations of Dipha aphidivora were recorded in months of December and January in each year. Peak populations of Micromus sp. were recorded during the time periods with low number of Dipha aphidivora and the correlation coefficient value between the population levels of Dipha aphidivora and Micromus sp. is 0.0047. Unidentified Syrphid fly larva was recorded an uneven distribution during the study period (Annual Research Progress, 2014) iii. Relationship of the three natural predators of SWA with some weather parameters The results of the Pearson correlation coefficient values of each three predator with rainfall, temperature and relative humidity (Table 1) have indicated that, there were no significant correlations of each predator with the weather parameters (Annual Research Progress, 2014) (Annex 02).
    [Show full text]