Insects That Feed on Trees and Shrubs

Total Page:16

File Type:pdf, Size:1020Kb

Insects That Feed on Trees and Shrubs INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Milan Rewerts, interim director of Cooperative Extension, Colorado State University, Fort Collins, Colorado. Cooperative Extension programs are available to all without discrimination. No endorsement of products named is intended nor is criticism implied of products not mentioned. Insects That Feed on Colorado Trees and Shrubs Page 2 Western Spruce Budworm ....................................... 16 Pine Budworm ............................................... 17 Large Aspen Tortrix ........................................... 18 Cankerworms and other Loopers .................................. 18 Table 2. A summary of the life history of common inchworms (Family: Geometridae) developing on trees and shrubs in Colorado ............ 19 Uglynest Caterpillar ........................................... 19 Fruittree Leafroller ............................................ 19 Juniper Webworm ............................................ 20 Forest Tent Caterpillar ......................................... 21 Sonoran Tent Caterpillar ........................................ 21 Western Tent Caterpillar ........................................ 22 Table 3. Tent-making caterpillars and sawflies of Colorado ................ 22 Snailcase Bagworm ........................................... 23 Spiny Elm Caterpillar/Mourning Cloak .............................. 24 Hackberry Butterfly ........................................... 24 Pine Butterfly ............................................... 25 Leaf Feeding Beetles ................................................ 25 Rabbitbrush Beetle ............................................ 26 Cottonwood Leaf Beetle ........................................ 26 Elm Leaf Beetle .............................................. 27 Flea Beetles ................................................. 28 Ashgray Blister Beetle ......................................... 29 Black Vine Weevil ............................................ 29 Severity of Defoliation injuries ................................... 30 Leaf Feeding Sawflies ............................................... 32 Pearslug (Pear sawfly) ......................................... 32 Imported Currantworm ......................................... 33 Brownheaded Ash Sawfly ....................................... 33 Poplar Leaffolding Sawfly ....................................... 34 Conifer Sawflies .............................................. 34 Bull Pine Sawfly ............................................. 35 Juniper Sawfly ............................................... 36 Web-spinning Sawflies ......................................... 36 Table 4. Sawflies recorded from Colorado that feed on trees and shrubs7 ....... 30 Leafcutter Bees .............................................. 39 Grasshoppers ................................................ 39 LEAF AND NEEDLEMINERS ........................................ 41 Aspen Leafminer ............................................. 41 Spotted Tentiform Leafminer ..................................... 42 Lilac Leafminer .............................................. 42 Insects That Feed on Colorado Trees and Shrubs Page 3 Ponderosa Pine Needle Miner .................................... 43 Pinyon Needleminer ........................................... 43 Pine Needle Sheath Miner ....................................... 44 Spruce Needleminer ........................................... 44 White Fir Needleminer ......................................... 45 Poplar Blackmine Beetle ........................................ 45 Elm Leafminer ............................................... 46 Birch Leafminer .............................................. 46 Table 5. A Key to Common Insect Groups causing Foliage Injuries to Woody Plant Foliage ........................................... 47 GALL MAKERS .................................................. 48 Cooley Spruce Gall Adelgid ..................................... 48 Petiolegall Aphids ............................................ 50 Poplar Vagabond Aphid ........................................ 51 Hackberry Nipplegall Maker ..................................... 51 Hackberry Budgall Psyllid ....................................... 52 Eriophyid Mites .............................................. 53 Table 6. Common deformities to woody plants caused by eriophyid mites in Colorado ........................................ 54 Poplar Budgall Mite ........................................... 55 Ash Flowergall Mite ........................................... 55 Pinyon Spindlegall Midge ....................................... 55 Pinyon Stunt Needlegall Midge ................................... 57 Stubby Needlegall Midge ....................................... 57 Gouty Veingall Midge ......................................... 58 Honeylocust Podgall Midge ...................................... 58 Willow Cone Gall Midge ....................................... 59 Juniper Tip Midge ............................................ 59 Poplar Twiggall Fly ........................................... 60 Rabbitbrush Gall Makers ........................................ 61 Rose Gall Wasps ............................................. 62 Gall Wasps Associated With Oak .................................. 62 Rough Bulletgall Wasp ......................................... 63 Willow Gall Sawflies .......................................... 64 Willow Redgall Sawfly ......................................... 64 TIP MOTHS, TWIG AND TERMINAL BORERS ........................... 66 Southwestern Pine Tip Moth ..................................... 66 Pinyon Pitch Nodule Moth ...................................... 67 Cottonwood Twig Borer ........................................ 67 Peach Twig Borer ............................................ 68 Insects That Feed on Colorado Trees and Shrubs Page 4 Pinyon Tip Moth ............................................. 69 White Pine Weevil ............................................ 69 Gouty Pitch Midge ............................................ 71 Pemphredon Wasps ........................................... 71 Rose Stem-Boring Sawfly ....................................... 72 BARK AND TWIG BEETLES ........................................ 74 Twig Beetles ................................................ 74 Western Cedar Bark Beetles ..................................... 75 Mountain Pine Beetle .......................................... 75 Douglas-fir Beetle ............................................ 77 Red Turpentine Beetle ......................................... 78 Engraver Beetles ............................................. 78 Ash Bark Beetles ............................................. 79 Shothole Borer ............................................... 79 Smaller European Elm Bark Beetle ................................. 80 BORERS OF TRUNKS AND LARGER BRANCHES ........................ 82 Pinyon "Pitch Mass" Borer ...................................... 82 Table 7. Flight Periods and Hosts of Common Woody Plant Borers in Colorado ..................................................... 83 Zimmerman Pine Moth ......................................... 84 Carpenterworm .............................................. 85 Peach Tree Borer ............................................. 86 Table 8. Common Colorado Clearwing Borers (Sesiidae) Captured by Pheromone Traps ........................................ 86 Currant Borer ................................................ 87 Lilac/Ash Borer .............................................. 88 Raspberry Crown Borer ......................................... 89 Elder Shoot Borer ............................................ 90 Cottonwood Borer ............................................ 90 Locust Borer ................................................ 91 Pole Borer .................................................. 91 Blackhorned Pine Borer ........................................ 92 Ponderous Borer
Recommended publications
  • Celtis Tenuifolia) in Ontario
    Photo: Allen Woodliffe Dwarf Hackberry (Celtis tenuifolia) in Ontario Ontario Recovery Strategy Series Recovery strategy prepared under the Endangered Species Act, 2007 2013 Ministry of Natural Resources About the Ontario Recovery Strategy Series This series presents the collection of recovery strategies that are prepared or adopted as advice to the Province of Ontario on the recommended approach to recover species at risk. The Province ensures the preparation of recovery strategies to meet its commitments to recover species at risk under the Endangered Species Act (ESA) and the Accord for the Protection of Species at Risk in Canada. What is recovery? What’s next? Recovery of species at risk is the process by which the Nine months after the completion of a recovery strategy decline of an endangered, threatened, or extirpated a government response statement will be published species is arrested or reversed, and threats are which summarizes the actions that the Government of removed or reduced to improve the likelihood of a Ontario intends to take in response to the strategy. species’ persistence in the wild. The implementation of recovery strategies depends on the continued cooperation and actions of government agencies, individuals, communities, land users, and What is a recovery strategy? conservationists. Under the ESA a recovery strategy provides the best available scientific knowledge on what is required to For more information achieve recovery of a species. A recovery strategy outlines the habitat needs and the threats to the To learn more about species at risk recovery in Ontario, survival and recovery of the species. It also makes please visit the Ministry of Natural Resources Species at recommendations on the objectives for protection and Risk webpage at: www.ontario.ca/speciesatrisk recovery, the approaches to achieve those objectives, and the area that should be considered in the development of a habitat regulation.
    [Show full text]
  • Caterpillars Moths Butterflies Woodies
    NATIVE Caterpillars Moths and utter flies Band host NATIVE Hackberry Emperor oodies PHOTO : Megan McCarty W Double-toothed Prominent Honey locust Moth caterpillar Hackberry Emperor larva PHOTO : Douglas Tallamy Big Poplar Sphinx Number of species of Caterpillars n a study published in 2009, Dr. Oaks (Quercus) 557 Beeches (Fagus) 127 Honey-locusts (Gleditsia) 46 Magnolias (Magnolia) 21 Double-toothed Prominent ( Nerice IDouglas W. Tallamy, Ph.D, chair of the Cherries (Prunus) 456 Serviceberry (Amelanchier) 124 New Jersey Tea (Ceanothus) 45 Buttonbush (Cephalanthus) 19 bidentata ) larvae feed exclusively on elms Department of Entomology and Wildlife Willows (Salix) 455 Larches or Tamaracks (Larix) 121 Sycamores (Platanus) 45 Redbuds (Cercis) 19 (Ulmus), and can be found June through Ecology at the University of Delaware Birches (Betula) 411 Dogwoods (Cornus) 118 Huckleberry (Gaylussacia) 44 Green-briar (Smilax) 19 October. Their body shape mimics the specifically addressed the usefulness of Poplars (Populus) 367 Firs (Abies) 117 Hackberry (Celtis) 43 Wisterias (Wisteria) 19 toothed shape of American elm, making native woodies as host plants for our Crabapples (Malus) 308 Bayberries (Myrica) 108 Junipers (Juniperus) 42 Redbay (native) (Persea) 18 them hard to spot. The adult moth is native caterpillars (and obviously Maples (Acer) 297 Viburnums (Viburnum) 104 Elders (Sambucus) 42 Bearberry (Arctostaphylos) 17 small with a wingspan of 3-4 cm. therefore moths and butterflies). Blueberries (Vaccinium) 294 Currants (Ribes) 99 Ninebark (Physocarpus) 41 Bald cypresses (Taxodium) 16 We present here a partial list, and the Alders (Alnus) 255 Hop Hornbeam (Ostrya) 94 Lilacs (Syringa) 40 Leatherleaf (Chamaedaphne) 15 Honey locust caterpillar feeds on honey number of Lepidopteran species that rely Hickories (Carya) 235 Hemlocks (Tsuga) 92 Hollies (Ilex) 39 Poison Ivy (Toxicodendron) 15 locust, and Kentucky coffee trees.
    [Show full text]
  • Elderberry and Elderflower Sambucus( Spp.): a Cultivation Guide for Florida1 David Jarnagin, Ali Sarkhosh, Juanita Popenoe, Steve Sargent, and Kevin Athearn2
    HS1390 Elderberry and Elderflower (Sambucus spp.): A Cultivation Guide for Florida1 David Jarnagin, Ali Sarkhosh, Juanita Popenoe, Steve Sargent, and Kevin Athearn2 Elderberry, Sambucus spp., has long been cultivated or Pushes for commercial cultivation were initiated in various collected from the wild by humans for both food and regions of North America in the 1920s and again in the medicine. Europeans have used the flowers and fruit 1960s, but the most recent iteration of commercial cultiva- of Sambucus nigra for thousands of years, while Native tion over the last 10 to 15 years has outpaced the previous Americans and European immigrants used Sambucus nigra attempts considerably. The high levels of antioxidants and ssp. canadensis, native to the New World (Figure 1). health benefits of the fruit have created new demand for the fruit and flowers, and this new demand may provide an alternative crop opportunity for Florida growers with many value-added possibilities. A native species grows wild throughout Florida, indicating that this may be a perennial crop that can be sustainably grown on marginal land. However, the native Florida plants have many drawbacks compared to the more commonly cultivated forms originating from farther north, and these drawbacks are Figure 1. Elderberry and elderflower cymes. an important consideration for proper establishment on a Credits: Hyldemoer + Co., Florida commercial scale. The fruit and flowers of the elder are used for wine, preserves, tinctures, teas, brewing and distilled The purpose of this paper is to provide information on spirits, and dyes for both food and textiles. The anthocya- growing American elderberry in Florida as an alternative nins in the fruit have been found to have higher antioxidant crop for commercial growers as well as homeowners.
    [Show full text]
  • June 2016 1 THINGS to DO / THINGS to THINK ABOUT THIS MONTH
    Spring/early summer is here and the 2016 growing season is well underway. The predictable unpredictability of the weather has brought the typical challenges that we face on an annual basis. Hopefully the majority of you are untouched or unaffected by the quirky weather that has been observed. Hopefully you’ve gotten some of the rain that has fallen across the Prairies. To combat or counteract the unpredictability of the weather, welcome to another ever-so-predictable edition of Hort Snacks. The content isn’t always predictable, but the arrival of it is. In this edition, you’ll notice a theme. And that theme is largely creepy/crawly. The season of insect wildlife is upon us, and to prepare you (and perhaps some of your customers) for identifying and dealing with some of those pests, you’ll find some caterpillar-related resources. That doesn’t mean that there aren’t more things out there, but this is a start. Otherwise, please take a moment to look at the various bits and pieces that might be of interest to you. Regardless, we wish you all the best for your growing season. Stay in touch. Rob Spencer/Dustin Morton, Commercial Horticulture Specialists Alberta Ag-Info Centre Alberta Agriculture and Forestry 310-FARM (3276) In this edition of Hort Snacks . Featured Surveys ………1 . Things to Do / Things to Think About ………2 . Interesting News/Articles to Read ………2 FEATURED SURVEYS . DED Awareness Week Reminder ………2 . Upcoming Conferences/Workshops ………3 . Input being sought with regards to Future Government Hort Snacks in the Field - Veg & Fruit Field Days ………3 .
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Survey of the Lepidoptera Fauna in Birch Mountains Wildland Provincial Park
    Survey of the Lepidoptera Fauna in Birch Mountains Wildland Provincial Park Platarctia parthenos Photo: D. Vujnovic Prepared for: Alberta Natural Heritage Information Centre, Parks and Protected Areas Division, Alberta Community Development Prepared by: Doug Macaulay and Greg Pohl Alberta Lepidopterists' Guild May 10, 2005 Figure 1. Doug Macaulay and Gerald Hilchie walking on a cutline near site 26. (Photo by Stacy Macaulay) Figure 2. Stacey Macaulay crossing a beaver dam at site 33. (Photo by Doug Macaulay) I TABLE OF CONTENTS INTRODUCTION................................................................................................................... 1 METHODS .............................................................................................................................. 1 RESULTS ................................................................................................................................ 3 DISCUSSION .......................................................................................................................... 4 I. Factors affecting the Survey...........................................................................................4 II. Taxa of particular interest.............................................................................................5 A. Butterflies:...................................................................................................................... 5 B. Macro-moths ..................................................................................................................
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Elderberry: Botany, Horticulture, Potential
    4 Elderberry: Botany, Horticulture, Potential Denis Charlebois Agriculture and Agri-Food Canada Horticultural Research and Development Centre 430 Gouin Boulevard Saint-Iean-sur-Richelieu, Quebec, J3B 3E6 Canada Patrick 1. Byers Cooperative Extension Service University of Missouri Springfield, MO 65802 Chad E. Finn Horticultural Crops Research Laboratory U.S. Department of Agriculture Agricultural Research Service 3420 NW Orchard Avenue Corvallis, OR 97330 Andrew1. Thomas Southwest Research Center University of Missouri 14548 Highway H Mt. Vernon, MO 65712 1. INTRODUCTION II. BOTANY A. Taxonomy B. Distribution 1. Sambucus canadensis 2. Sambucus nigra Horticultural Reviews, Volume 37 Edited by Jules Janick Copyright © 2010Wiley-Blackwell. 213 214 D. CHARLEBOIS, P. 1. BYERS, C. E. FINN, AND A. 1. THOMAS 4. ELDERBERRY: BOTANY, HORTICULTURE, POTENTIAL 215 C. Habitat 3. Fruit D. Morphology 4. Antiviral and Antimicrobial Properties E. Reproductive Biology 5. Anthocyanins and Antioxidant Capacity 1. Pollination F. Ecological Value and Ornamental Potential 2. Fruit Ripening G. Markets and Production Costs F. Plant Development H. Processing III. HORTICULTURE VI. CONCLUDING REMARKS A. Winter Hardiness LITERATURE CITED 1. Sambucus canadensis 2. Sambucus nigra B. Site Selection and Preparation 1. Soil Preference I. INTRODUCTION 2. Site Preparation 3. Irrigation The elderberry or elder (Sambucus spp.), in production or growing wild C. Orchard Establishment in the northernhemisphere, mayhave the widestrange of applications of D. Fertilization and Mycorrhizae all small fruits. Members of the genus Sambucus have a multitude of E. Pruning 1. Maintenance uses, including riverbank stabilization and windbreaks (Paquet and 2. Rejuvenation Jutras 1996); wildlife food and refuge; ornamental, crafts, and games; 3. Corrective versatile human food source, and multipurpose medicinal (Valles F.
    [Show full text]
  • Membership 2005: Year in Review
    ESA Newsletter Information for the Members of the Entomological Society of America MARCH 2006 • VOLUME 29, NUMBER 3 Membership 2005: Year in Review By Chris Stelzig, Director of Membership we get too far into the year, I wanted to fin- not withstanding, this is a great, inexpensive and Marketing ish the update on 2005. way to get general feedback from you on a Sections and Branches—The Pacific wide range of topics. Headquarters uses this For the first time since 1992, ESA posted Branch saw the most growth when we com- data for planning purposes. In the Member- two back-to-back years of membership pare 2004 to 2005 with a 12% increase in ship Toolbox on the website (http://www. growth. This is a milestone, especially when membership. Only the Southeastern Branch entsoc.org/membership/toolbox/support_ coupled with the fact that just five years ago saw an actual decline, and that was merely esa/survey.htm), you will find a list of all our we were losing members by the hundreds by one person (a case in point to say that active surveys and an invitation to partici- every year and our funds were quickly dry- EVERY membership renewal is important!). pate in one. ing up. You’ve heard me say “Strength in Section B saw the largest growth last year, Performance—About 80% of members Numbers” for nearly five years now. The leaping more than 10%. who responded felt that they were satisfied reason for this is that membership is the Membership Types—As I mentioned with performance from ESA headquarters.
    [Show full text]
  • PORTABLE OUTDOOR CAGES for MATING FEMALE GIANT SILKWORM MOTHS (SATURNIIDAE)L
    VOLUME 30, NUMBER 2 95 PORTABLE OUTDOOR CAGES FOR MATING FEMALE GIANT SILKWORM MOTHS (SATURNIIDAE)l THOMAS A. MILLER 2 AND WILLIAM J. COOPER ~ U. S. Army Medical Bioengineering Research and Development Laboratory, USAMBRDL BLDG 568, Fort Detrick, Maryland 21701 Like many lepidopterists who colonize and study the saturniids, we must find time apart from professional duties and other daily activities to pursue our interest in this family of moths. Therefore, our rearing methods must be both efficient and reliable if we are to accomplish any­ thing other than the mere maintenance of colonies. Although most of the saturniid species we have reared can be colonized for many genera­ tions without difficulty, we have at times had a particular problem obtain­ ing fertile eggs to perpetuate existing colonies or to begin new ones. This problem has been a function largely of limited available time to ensure the mating of females either by hand mating or by the use of indoor cages. For this reason we undertook an evaluation of methods for the routine, unattended mating of female saturniids indigenous to our area. We decided beforehand that the tying out of virgin females and the use of various-size stationary cages or traps (Collins & Weast, 1961; Quesada, 1967; Villiard, 1969) were not suitable to meet our requirements. Our approach, therefore, was to construct and test a series of portable out­ door cages that could be substituted locally for tying out or stationary cages and could also be easily transported for use in remote field areas. These cages were designed to minimize or prevent the escape of females placed therein while permitting pheromone-seeking males access for the purpose of copulation.
    [Show full text]
  • Forest Insect Conditions in the United States 1966
    FOREST INSECT CONDITIONS IN THE UNITED STATES 1966 FOREST SERVICE ' U.S. DEPARTMENT OF AGRICULTURE Foreword This report is the 18th annual account of the scope, severity, and trend of the more important forest insect infestations in the United States, and of the programs undertaken to check resulting damage and loss. It is compiled primarily for managers of public and private forest lands, but has become useful to students and others interested in outbreak trends and in the location and extent of pest populations. The report also makes possible n greater awareness of the insect prob­ lem and of losses to the timber resource. The opening section highlights the more important conditions Nationwide, and each section that pertains to a forest region is prefaced by its own brief summary. Under the Federal Forest Pest Control Act, a sharing by Federal and State Governments the costs of surveys and control is resulting in a stronger program of forest insect and disease detection and evaluation surveys on non-Federal lands. As more States avail themselves of this financial assistance from the Federal Government, damage and loss from forest insects will become less. The screening and testing of nonpersistent pesticides for use in suppressing forest defoliators continued in 1966. The carbamate insecticide Zectran in a pilot study of its effectiveness against the spruce budworm in Montana and Idaho appeared both successful and safe. More extensive 'tests are planned for 1967. Since only the smallest of the spray droplets reach the target, plans call for reducing the spray to a fine mist. The course of the fine spray, resulting from diffusion and atmospheric currents, will be tracked by lidar, a radar-laser combination.
    [Show full text]