Appendix 1 Calculation of a Chemical Formula from a Mineral Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
19660017397.Pdf
.. & METEORITIC RUTILE Peter R. Buseck Departments of Geology and Chemistry Arizona State University Tempe, Arizona Klaus Keil Space Sciences Division National Aeronautics and Space Administration Ames Research Center Mof fett Field, California r ABSTRACT Rutile has not been widely recognized as a meteoritic constituent. show, Recent microscopic and electron microprobe studies however, that Ti02 . is a reasonably widespread phase, albeit in minor amounts. X-ray diffraction studies confirm the Ti02 to be rutile. It was observed in the following meteorites - Allegan, Bondoc, Estherville, Farmington, and Vaca Muerta, The rutile is associated primarily with ilmenite and chromite, in some cases as exsolution lamellae. Accepted for publication by American Mineralogist . Rutile, as a meteoritic phase, is not widely known. In their sunanary . of meteorite mineralogy neither Mason (1962) nor Ramdohr (1963) report rutile as a mineral occurring in meteorites, although Ramdohr did describe a similar phase from the Faxmington meteorite in his list of "unidentified minerals," He suggested (correctly) that his "mineral D" dght be rutile. He also ob- served it in several mesosiderites. The mineral was recently mentioned to occur in Vaca Huerta (Fleischer, et al., 1965) and in Odessa (El Goresy, 1965). We have found rutile in the meteorites Allegan, Bondoc, Estherville, Farming- ton, and Vaca Muerta; although nowhere an abundant phase, it appears to be rather widespread. Of the several meteorites in which it was observed, rutile is the most abundant in the Farmington L-group chondrite. There it occurs in fine lamellae in ilmenite. The ilmenite is only sparsely distributed within the . meteorite although wherever it does occur it is in moderately large clusters - up to 0.5 mn in diameter - and it then is usually associated with chromite as well as rutile (Buseck, et al., 1965), Optically, the rutile has a faintly bluish tinge when viewed in reflected, plane-polarized light with immersion objectives. -
Hydrothermal and Metamorphic Berthierine
n27 CanadianMineralogist Vol. 30,pp. 1127-1142 (1992) HYDROTHERMALAND METAMORPHICBERTHIERINE FROM THE KIDD CREEK VOLCANOGENICMASSTVE SULFIDE DEPOSIT. TIMMINS, ONTARIO JOHNF.SLACK U.S.Geological Survey, Nationnl Center, Mail Stop954, Reston, Virginia 22092, U.S.A. WEI-TEH JIANG ANDDONALD R. PEACOR Depamnent of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. PATRICKM. OKITA* U.S.Geological Survey, National Center,Mail Stop954, Reston,Virginia 22092,U.S.A. ABSTRACT Berthierine,a 7 A pe-Al memberof the serpentinegroup, occursin the footwall stringerzone of the ArcheanKidd Creek massivesulfide deposit, Ontario, associated with quartz,muscovite, chlorite, pyrite, sphalerite,chalcopyrite, and local tourmaline' cassiterite,and halloysite. Berthierine has been identified by the lack of 14A basalreflections on X-ray powderdiffractionpattems, by its composition (electron-microprobedata), and by transmissionelectron microscopy (TEM). Peoogaphic and scanning eiectronmicroscopic (SEM) studiesreveal different types of berthierineocculrences, including interlayerswithin and rims on deformedchlorite, intergrowthswith muscoviteand halloysite,and discretecoarse grains. TEM imagesshow thick packetsof berthierineand chlorite that are parallel or relatedby low-angle boundaries,and layer terminationsof chlorite by berthierine; mixedJayer chlorite-berthierinealso is observed,intergrown with Fe-rich chlorite and berthierine.End-member (Mg-free) berthierineis presentin small domainsin two samples.The Kidd Creekberthierine is chemicallysimilar -
Chemical and Structural Evolution of “Metamorphic Vermiculite” in Metaclastic Rocks of the Betic Cordillera, Málaga, Spain: a Synthesis
249 The Canadian Mineralogist Vol. 44, pp. 249-265 (2006) CHEMICAL AND STRUCTURAL EVOLUTION OF “METAMORPHIC VERMICULITE” IN METACLASTIC ROCKS OF THE BETIC CORDILLERA, MÁLAGA, SPAIN: A SYNTHESIS MARÍA DOLORES RUIZ CRUZ§ Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain JOSÉ MIGUEL NIETO Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva, Spain ABSTRACT Vermiculite-like minerals from a metamorphic sequence of the Betic Cordillera, near Málaga, southeastern Spain, were investigated in detail by X-ray diffraction, electron-microprobe analysis, and transmission-analytical electron microscopy. Our results reveal that the chlorite-to-biotite transformation is much more complex than previously assumed. In addition to mixed- layer minerals with a mica:chlorite ratio of 2:1 and 1:1, which had previously been identifi ed, mixed-layer phases with very high and very low chlorite:vermiculite ratios have been identifi ed, together with true vermiculite, as intermediate steps in the chlorite-to-biotite transformation. The observed sequence is: chlorite → random to ordered 1:2 mica–chlorite mixed-layer phases → regular 1:1 chlorite–vermiculite mixed-layer phases → Vrm-rich chlorite–vermiculite mixed-layer phases → vermiculite → biotite. This sequence includes a continuous increase of interlayer cation content, and is similar to that described in the smectite- to-illite transformation. The high Na content of most of these phases suggests that in the absence of K-feldspar, two parallel sites of reactants, chlorite + phengite and chlorite + albite, account for the formation of vermiculitic phases, and later, of biotite. Keywords: mixed-layer minerals, metamorphic vermiculite, X-ray diffraction, electron-microprobe analysis, transmission elec- tron microscopy, analytical electron microscopy, Betic Cordillera, Spain. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
A Single-Crystal Epr Study of Radiation-Induced Defects
A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal. -
Minerals-10-00395-V2.Pdf
minerals Article Slatecalculation—A Practical Tool for Deriving Norm Minerals in the Lowest-Grade Metamorphic Pelites and Roof Slates Hans Wolfgang Wagner 1,* , Dieter Jung 2, Jean-Frank Wagner 3 and Matthias Patrick Wagner 4 1 Lehrstuhl für Geologie, Universität Trier, Im Nettetal 4, D 56727 Mayen, Germany 2 Mineralogisch-Petrographisches Institut Universität Hamburg, Grindelallee 48, D 20146 Hamburg, Germany; [email protected] 3 Lehrstuhl für Geologie, Universität Trier, Behringstrasse 21, D 54296 Trier, Germany; [email protected] 4 Institute of Geography, Kiel University, D 24118 Kiel, Germany; [email protected] * Correspondence: [email protected] Received: 3 March 2020; Accepted: 26 April 2020; Published: 29 April 2020 Abstract: Roof and wall slates are fine-grained rocks with slaty cleavage, and it is often difficult to determine their mineral composition. A new norm mineral calculation called slatecalculation allows the determination of a virtual mineral composition based on full chemical analysis, including the amounts of carbon dioxide (CO2), carbon (C), and sulfur (S). Derived norm minerals include feldspars, carbonates, micas, hydro-micas, chlorites, ore-minerals, and quartz. The mineral components of the slate are assessed with superior accuracy compared to the petrographic analysis based on the European Standard EN 12326. The inevitable methodical inaccuracies in the calculations are limited and transparent. In the present paper, slates, shales, and phyllites from worldwide occurrences were examined. This also gives an overview of the rocks used for discontinuous roofing and external cladding. Keywords: mineralogy; roof slates; shales; phyllites; norm mineral calculation; hydro-micas; illite 1. Introduction Under the term “roof and wall slates”, rocks that have good cleavage and high suitability for overlapping and discontinuous roofing as well as external cladding. -
The Thermal Dehydration of Natural Zeolites
549.67:536.4 MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 74-9 (1974) THE THERMAL DEHYDRATION OF NATURAL ZEOLITES (with a summary in Dutch) L. P. VAN REEUWIJK Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands (Received 11-11-1974) H. VEENMAN & ZONEN B.V. - WAGENINGEN - 1974 Ml Mededelingen Landbouwhogeschool Wageningen 74-9 (1974) (Communications Agricultural University) is also published as a thesis CONTENTS 1. INTRODUCTION 1 1.1. History 1 1.2. Genesis and occurrence of natural zeolites 2 1.3. Structural classification 4 1.4. Practical applications of zeolites 8 2. THE DEHYDRATION OF ZEOLITES - A CRITICAL REVIEW 11 2.1. Introduction 11 2.2. DTA and TG 12 2.3. High temperature X-ray analysis 13 2.4. Vapour pressure 14 2.5. The reaction mechanism 15 2.6. Rehydration 16 3. THE COMPLEXITY OF THE DEHYDRATION PROCESS 17 3.1. Types of dehydration 17 3.2. Examples 18 3.3. Effect of pressure on dehydration 22 3.3.1. Qualitative aspect 22 3.3.2. Quantitative aspect - Calibration of pressure 25 3.4. Dehydration equilibrium and hysteresis 26 3.5. Internal and external adsorption 28 4. DEHYDRATION OF ZEOLITES OF THE NATROLITE GROUP 30 4.1. Materials and procedures 30 4.2. Results and discussion 31 4.2.1. Natrolite 31 4.2.2. Mesolite 33 4.2.3. Scolecite 36 4.2.4. Thomsonite 37 4.2.5. Gonnardite 37 4.2.6. Edingtonite 38 4.3. Conclusions 39 5. PRESSURE-TEMPERATURE RELATIONS 40 5.1. The Clausius-Clapeyron equation 41 5.2. Experimental 43 5.3. -
Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages. -
Far-Infrared Spectra of Hydrous Silicates at Low Temperatures Providing Laboratory Data for Herschel and ALMA
A&A 492, 117–125 (2008) Astronomy DOI: 10.1051/0004-6361:200810312 & c ESO 2008 Astrophysics Far-infrared spectra of hydrous silicates at low temperatures Providing laboratory data for Herschel and ALMA H. Mutschke1,S.Zeidler1, Th. Posch2, F. Kerschbaum2, A. Baier2, and Th. Henning3 1 Astrophysikalisches Institut, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [mutschke;sz]@astro.uni-jena.de 2 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: [email protected] 3 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 2 June 2008 / Accepted 4 September 2008 ABSTRACT Context. Hydrous silicates occur in various cosmic environments, and are among the minerals with the most pronounced bands in the far infrared (FIR) spectral region. Given that Herschel and ALMA will open up new possibilities for astronomical FIR and sub-mm spectroscopy, data characterizing the dielectric properties of these materials at long wavelengths are desirable. Aims. We aimed at examining the FIR spectra of talc, picrolite, montmorillonite, and chamosite, which belong to four different groups of phyllosilicates. We tabulated positions and band widths of the FIR bands of these minerals depending on the dust temperature. Methods. By means of powder transmission spectroscopy, spectra of the examined materials were measured in the wavelength range 25−500 μm at temperatures of 300, 200, 100, and 10 K. Results. Room-temperature measurements yield the following results. For talc, a previously unknown band, centered at 98.5 μm, was found, in addition to bands at 56.5 and 59.5 μm. -
THB Avterican Mtxeralocist
THB AvtERICAN MtxERALocIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol. 49 JUL\'-AUGUST, 1964 Nos. 7 and 8 BUDDINGTONITE, AN AMMONIUM FELDSPAR WITH ZEOLITIC WATER1 Rrcn,lno C. Ent, DoNaro E. Wnrro, Josorn J. Faunv eNo Dower-o E. Lno, U. S. Geol,ogicolSurttey, Menlo Park, Calif ., and' Wash'ington,D' C. Arsrn,q.ct Buddingtonite, the first ammonium aluminosilicate found in nature, occurs in Quater- nary andesite and older rocks hydrothermally altered by ammonia-bearing hot-spring waters below the water table at the Sulphur Bank quicksilver mine, Lake county, cali- fornia. Typicaliy, it occurs as compact masses pseudomorphous after plagioclase, and as crystals as much as 0.05 mm diameter lining cavities. Buddingtonite is biaxial (*), a:1.530,0:1'531, r:1.534 all *0'002,2V not de- terrnined,X/1a:4',2:b,Y Ac:19'. H 5+, G2.32+0.01- Chemical analysis of purest separate gave: SiOz,63.80;A1:Or, 19.16; FezOe, 1'85; MgO' 0.21; CaO,0.04; BaO, 0.26; NarO, 0.06; KzO, 0.62; (NHr)rO, 7.95;TiO2,0.99; HzO-, 0'88; HzO+,3.28; S, 1.59;total 100.69(-O+S):100.10 per cent. Buddingtonite is monoclinic; P21or P21fm;a:8.571,b:13.032,c:7.187,A:ll2o44' !l'; a:b:c:0.658:1:0.551; cell volume, 7+0.42fu;ceil contents4[NHdISirOs'1/2HzO]; calculated density, 2.38s gcm-3. From 370" to 430. c, buddingtonite is the ammonium analogue of monoclinic K-feld- spar; below about 370' C with normal atmospheric moisture, buddingtonite adsorbs zeo- Iitic water.