<<

n27

CanadianMineralogist Vol. 30,pp. 1127-1142 (1992) HYDROTHERMALAND METAMORPHICBERTHIERINE FROM THE KIDD CREEK VOLCANOGENICMASSTVE SULFIDE DEPOSIT. TIMMINS, ONTARIO

JOHNF.SLACK U.S.Geological Survey, Nationnl Center, Mail Stop954, Reston, Virginia 22092, U.S.A.

WEI-TEH JIANG ANDDONALD R. PEACOR Depamnent of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

PATRICKM. OKITA* U.S.Geological Survey, National Center,Mail Stop954, Reston,Virginia 22092,U.S.A.

ABSTRACT Berthierine,a 7 A pe-Al memberof the serpentinegroup, occursin the footwall stringerzone of the ArcheanKidd Creek massivesulfide deposit, Ontario, associated with quartz,, chlorite, pyrite, sphalerite,chalcopyrite, and local tourmaline' cassiterite,and . Berthierine has been identified by the lack of 14A basalreflections on X-ray powderdiffractionpattems, by its composition (electron-microprobedata), and by transmissionelectron microscopy (TEM). Peoogaphic and scanning eiectronmicroscopic (SEM) studiesreveal different types of berthierineocculrences, including interlayerswithin and rims on deformedchlorite, intergrowthswith muscoviteand halloysite,and discretecoarse grains. TEM imagesshow thick packetsof berthierineand chlorite that are parallel or relatedby low-angle boundaries,and layer terminationsof chlorite by berthierine; mixedJayer chlorite-berthierinealso is observed,intergrown with Fe-rich chlorite and berthierine.End-member (Mg-free) berthierineis presentin small domainsin two samples.The Kidd Creekberthierine is chemicallysimilar to berthierinefrom other localities, and to Fe-rich chlorite from a variety of geologicalsettings. This is the first reportedoccurence of berthierinefrom volcanogenicmassive sulfide deposits.Textural relations suggestthat most of the Kidd Creekberthierine formed as a primary hydrothermalmineral at relatively high temperatures(*350"C) in the footwall stringerzone, probably by the replacementof a pie-existingaluminous phase such as muscovite or chlorite.However, the intergrowth textures observed by SEM andTEM suggest thatsome oftheberthierine originatedby syn- orpost-metamorphic replacement ofchlorite. The difficulty ofidentifying berthierine by routinepetrographic, X-ray, andelecfon-microprobe methods suggests that muchofthe Fe-richchlorite described from modem and ancientmassive sulfide depositsmay insteadbe berthierine. Keywords:berthierine, chlorite, volcanogenicsulfide deposit,fiansmission electron microscopy, electron-microprobe data X-raY powderdiffraction, Kidd Creekmine, Timmins, Ontario. SonaN.lans On trouve la berthierine,membre Fe-Al I 7 A du groupede la serpentine,dans la zone de minerai en veinulesde la paroi infdrieuredu glte archdende sulfuresmassifs de Kidd Creek,en Ontario,en associationavec quartz, muscovite, chlorite, pyrite, sphal6rite,et chalcopyrite,avec prdsence locale de tourmaline,cassitdrite et halloysite.On reconnaitla berthierinepar I'absence d^'uneraie ayant une valeur d de-14 A surle clich6de diffractionX, par sacomposition (donn6es i la microsonde6lectronique), et par 6tudei au microscopedlectronique par transmission.Des 6tudespdrographiques et au microscope6lectronique i balayage montrentque la berthierinese pr6sente sous plus d'un aspect:elle forme une interstratificationavec et une gaine sur la chlorite d6form6e,une intercroissance avec muscovite et halloysite,et desgrains individuels relativement grossiers. Les imagesobtenues par transmissionmontrent d'6pais amas de berthierineet de chlorite parallblesou I faible angle d'incidence,et des feuillets de chloriteayantuneterminaison deberthierine. Desassemblages mixtes dechlorite-berthierine sont aussiprdsents, enintercroissance avec chlorite fenifbre et berthierine.Le p6le ferrifdre de la berthierine (sansMg) est signald en petits domainesdans deux 6chantillons.Du point de vue composition,la berthierinede Kidd Creekressemble a celle d'autresendroits, et d la chlorite riche en Fe de plusieurimilieux g€ologiques.Nous signalons ici pour la premibrefois la pr6sencede berthierinedans un gisementde sulfuresmassifs volcanog6niques. D'ap€s lesrelations texturales, la plupartde la berthierinei Kidd Creeks'est form6e comme minfral primaireI unetempdrature relativement 6lev6e (*350"C) dansla zonetr veinulesde la paroi inf6rieure,pmbablement par remplacementd'un pr&urseur alumineuxtel la muscoviteou la chlorite. Toutefois,les texturesd'intercroissances observ6es par microscopie6lectronique d balayageet par transmissionfont penserqu'une partie de la berthierinea uneorigine par remplacement syn- ou post-m6tamolphiquede la chlorite.la difficult6 quenous avons 6prouv6e d identifier la berthierinepar mdthodescourantes dL Ftrograptrie, de diffraction X et d'analysei la microsonde6lectronique nous incite i penserque la plupart desexemples de chlorite riche en fer citds dansla litldraturesur les gites de sulfuresmassifs modemes ou ancientsseraient plut6t de la berthierine. (Traduit par la R6daction)

Mots-clds:berthierine, chlorite, gite volcanog6niquede sulfuresmassifs, microscopie 6lectronique par transmission,donn6es d la microsonde6lectronique, diffraction X, m6thodedes poudres, mine de Kidd Creek,Timmins, Ontario.

*hesent address:BHP-Utah htemational Inc.,200 Fairbrook Drive, Hemdon, Virginia 22070, U.S.A. 1128 TI{E CANADIAN MINERALOGIST

II.ITRODUC"noN

Chlorite is one of the most abundantminerals in the alterationzones of volcanogenicmassive sulfide depos- its (e.9.,Franklin et al. l98l); it typicallyoccurs in veins with quartz,sulfides" and other minerals, and as replace- mentsof sedimentaryand volcanichost-rocks. In an- cient metamorphoseddeposits, chlorite may be the most commonlayer silicate,together with variableamounts of phengitic muscovite 1 paragonite;, stilp- nomelane,and generallyare rare. In the pristine, unmetamorphosedalteration zones of the Miocene KC-813 Kurokodeposits ofJapan, layer-silicate assemblages are complexand include chlorite, , smectite,local talc, celadonite,and ,and rare (Iijima 1974,Shirozu 1974, Utada et al. 1974,Shlrozu et al. 1975). The alterationpipes of Cretaceousmassive sulfide depositson Cyprus, also unmetamorphosed, containillite, chlorite,smectite, and rectorite (Lydon & Galley 1986,Richards et aL.1989).In this paper,we describethe occurrence of berthierine.an Fe-Al semen- tine-type mineral, and berthierine--chloritemixtures from the metamorphosedKidd Creekmassive sulfide deposit,ofArchean age, and discuss the implications of thesemixtures for interpretingthe paragenesisof Fe-Al layer silicatesin modern and ancient volcanogenic sulfideenvironments. KC-3231 IDEN'TFICATONAND OCCURRENCE 24 '20(CuKal Geologicalsetting Fro. l. X-ray powder-diffractionpattems (CuKcr radiation) for The large Kidd CreekCu-Zn-Pb-Ag deposit,north mineral separatesof layer silicates from the footwall of Timmins,Ontario, consists of massivepyrite" chalco- stringer zone (north orebody) of the Kidd Creek mine. pyrite,sphalerite, pynhotite, and galena locally under- Pattemsfor samplesKC-813, KC-2505, and KC-3421 -14 lain by a chalcopyrite-richstringer zone(Walker et al. lackthe diagnostic A (63'2e) and4.7 A (ts.s"zo) 1975,Coad 1985).The ores are hostedby Archean peaksof truechlorite (chl) andconsist mainly (or wholly) volcanicrocks dated by U-Pb zirconmethods at2711 of berthierine(ber) mixed wilh muscovite(mus) 1 quartz (qtz); Ma (Nunes& Pyke 1981,Banie & Davis 1990)and are small peaksat 7.V7.5"20 axeinstrumental artifacts. pattem^for sample KC-3231 (bottom) that believed to have formed Compare on or near the sea floor containsonly 14A chlorite.All patternswere acquired on synchronouslywith localvolcanism and sedimentation. air-driedand untreated samples. Multiple events related to postore deformation are evidencedby mine-scalefaults and shearzones, strain fabrics in hand specimenand thin section,and U-Pb geochronologicaldata (Walker et al. 1975,Bisbinet al. fied (by JFS) on the basis of optical featuresand results 1990,Banie & Davis 1990).Regional , of electron-microprobe analyses. Identification of the which only reachedlower greenschistgrade, took place Fe-rich chlorite is in error, however, as shown by X-ray at approximately2685 Ma (Percival& Krogh 1983)and powder-diffraction Q(RD) patterns of mineral separates was followed by a local metasomaticevent in the mine of layer silicates from Several samples^(Fig. 1). The areaat about2576Ma(Maas et al. 1986). Fe-rich silicate lacks the diagnostic 14 A reflection of chlorite, and therefore is berthierine" an Fe-Al member X-ray powder dffiaction of the serpentine group (a.9., Brindley 1982, Bailey 1988). The Fe-rich chlorite ("daphnite") described by Slack& Coad(1989) recently described the textures Slack & Coad ( I 989, Table 2, Fig. 12) consists largely and chemistry of Mg- and Fe-rich chlorite from the or wholly of berthierine, including that in samples footwall stringerzone at Kidd Creekand suggestedthat KC-8 I 3, KC-2505, KC-3421 , and KC-3482. An XRD thesetwo compositionaltypes of chloriteformed during study of layer silicate separates from the other Kidd separatehydrothermal events. The chlorite was identi- Creek samples(e.g.,KC-3231, Fig. l) showsprominent BERTHIERINEFROM TI{E KIDD CREEK DEPOSIT tt29

mn-Drlmgld DAIA mR Bmlmlm TM 1. X-W grain-sizesare 10-50!rm, althoughsome large crystals ' thatappear prismatic in crosssection (normal to {001}) h](l h&l AlEsb@ otr1l rc-au Kc-342r (@no) (h*) al-ca1c d-calc d-oalc d-calc in samplesKC-3421 and KC-3482 are as much as 100-200 pm long. Bertlierine grains commonlyare 001 010 ?.05 7.!2 1.O9 7.09 pleochroic colorless to pale green or from pale 020 100 1.67 4.6S from 110 4. sg greento mediumgreen, and most havehigher birefrin- 1U 4.24 4.30 4,26 4,26 o2l 101 3.93 gencethan chlorite-groupminerals (e.g., Hey 1954, oo2 002 yellow (rarelypurple) o22 2.AO 2.44 2.44 Alber-1962),producing to orange 20t 110 2.64 2.71 first-orderinterference colors (n 0.018).However, 2XO 1Xr !-na= 2.40 2.45 the berthierine grains in several sampleshave lower 2.34 2.24 2.24 birefringenceand superficially resemblechlorite, thus 222 tL2 2.L4 2.L5 2.13 leadingto misidentificationbased on petrographiccrite- 2.OA 2.OO 1.494 1.943 1.459 ria alone. 311 004 1.769 L.779 7.175 t.ala 233 1.700 L72A Berthierinegrains in sampleKC-3421 are locally 060 300 associatedwith a white . X-ray data ob- tainedwith a Debye-Scherrercamera (H.T. Evans,Jr., "mF cud ?-315. k*hl6rire fr@ Atrahire, m (arlndley 1951) 'PDF cdd 31-618. &itbL€rlno f,t@ @rby, w (Brlndl€y & :ouell USGS,pers. cornmun., 1991) indicate that this clay is 1953' traltoysiie-7A, with possiblya traceof halloysite-ldA. Electron-microprobeanalyses, using a defocusedbeam, show45-467a SiO2, 36-37 Vo Al2O3, 0.14.7 VoFeO, and anhydrousoxide totals of 83-84Vo,consistent with the 14 A basalreflections; thus thesedo containchlorite. presenceof halloysite. The halloysite forms irregular X-ray dataacquired for samplesKC-813 andKC-3421 zones(Fig. 2A) commonly0.5-1.0 mm in diameter (Table 1) yield similar d-valuesto thosereported for within massivesphalerite, and intergrowthswith mus- berthierinefrom Ayrshire,Scotland (Brindley 1 95 I ) and covite, quartz, and sparsefluorite; berthierine occurs Corby,England (Brindley & Youell 1953). alongthe marginsof somehalloysite zones (Fig. 2B). Formerlycalled septechlorite (Nelson & Roy 1958), One large zone of halloysite fills what appearsto be a and(incorrectly) chamosite and 7 A chamosite,berthier- former aggregateof euhedralflakes of muscovite(or ine is an Fe-rich aluminous fioctahedral 7 A layer anotherphyllosilicate) in sphalerite(not shown),sug- silicate with a 1:I structuresimilar to that of lizardite gestinga paragenesisofearly muscovite(?) followedby (Bailey 1988).Berthierine is difficult to recognizeby a laterstage involving pseudomorphous replacement by normal XRD methodsbecause the critical identifying halloysite.Inclusions of muscovitein some of the feature, the absenceof a 14 A basal reflection, is halloysite zones display embayed,corroded edges, commonly maskedby a peak due to admixedchlorite whereasothers have smooth boundaries;similar rela- (a.9.,Brindley 1982);conventional XRD studiescan tions exist betweensphalerite and layer silicates.The documentthe presenceof berthierineonly in samples halloysite is interpretedas a late hydrothermalphase, that lack chlorite. Benhierine associatedwith a small andnot a productof supergenealteration or weatltering, amountof Mg-Fe-rich chlorite can be misidentifiedas basedon the lack of fracturesin this sampleand the Fe-rich chlorite, becauseFe-rich chlorite has a very absenceof any secondaryminerals diagnostic of oxida- strongreflection at about 7 A rehtive to its -14 A tion or weatlering(e.9., hematite, covellite, goethite). reflection(Brindley 1982).Mixed layeringof berthier- Halloysite has beenidentified in someof the Mocene ine and chlorite may be suggestedby broader and Kurokodeposits of Japan(e.8., Nurukawa) andrecently weaker,odd-ordered 00/ reflections,compared to those in the modernKuroko-type Jade deposit actively form- of pure chlorite (Dean 1983,Ahn & Peacor1985). ing in the OkinawaTrough (Marumo 1991).Stanton Possible minor (<107o) interstratified Fe-Mg-rich (1983)reported possible halloysite from the Archean chlorite cannotbe detectedby XRD, however,because Gecomassive sulfide depositin Ontario,but without of the weak nature of the odd-order reflections supportingXRD evidence.The occurrencein the Kidd (Reynolds1988). The Kidd Creeksamples that lack a 14 Creek deposit appea$ to be the first example of A basalreflection (Fig. 1) thusconsist either entirely of hypogenehalloysite documented in hecambrian rocks. berthierine, or of berthierine and minor interlayered Berthierine commonly displays complex inter- chlorite not resolvableby )(RD methods. growths with both muscovite and chlorite. Euhedral berthierineblades enclosed within sphaleritein sample Petrographyanl scanningelectron microscopy KC-3421 locally show embayedcontacts with musco- vite (Fig. 2C) that suggestreplacement of muscovite(or Berthierinefromthe Kidd Creekmineforms anhedral a pre-existingphyllosilicate) by berthierine.However, grains and subhedralcrystals associatedwith quartz, other areas of this sample and areas within sample muscovite,chlorite, pyrite, sphalerite,chalcopyrite, and KC-813 (Fig. 2D) have "equilibrium" texturesthat local tourmaline, cassiterite,and halloysite. Typical imply contemporaneousformation of muscovite and Ftc. 2. SEM back-scatteredelectron images of samplesfrom the footwall stringerzone. A. Intergrowthof halloysite (dark grey) with muscovite(medium grey) andberthierine (pale grey) along right edge,sunounded by sphalerite(white); black areasare openpits(sample KC-3421). B. Detailof A showingeuhedral berthierine (pale grey) in contactwith muscovite(medium grey) and halloysite(dark ercy) and associatedwith sphaleritein white (sampleKC-3421). C. Massivesphalerite (pale grey) enclosingprismatic grainsof berthierine(medium grey) apparentlyreplacing muscovite (dark grey); small white grainsare cassiterite(sample KC-3421). D. Grainsof berthierine(pale grey) intergrownwith and sunoundedby muscovite(medium grey),and associated with quartz(dark grey); sphaleriteis white (sampleKC-813). E. Elongatecomposite grain ofberthierine (palegrey) andFe-Mg chlorite (mediumgrey); muscoviteis black and surroundingchalcopyrite is white (sampleKC-2505). F. Detail of E showingalternating lamellae of finely intergrownberthierine (pale grey) and Fe-Mg chlorite (mediumgrey), and rims of berthierineon chlorite; black areasare cracksand voids betweenmineral lamellae(sample KC-2505); seeTable 2 for resultsofelectron microprobe analyses ofthe chlorite(no. 2505F1) and benhierine (no. 2505F2) in this grain. BERTHIERINE FROM TIIE KIDD CREEK DEPOSIT 1131 berthierine (or its precursor). Berthierine in sample large crystalsof Fe-Mg-rich chlorite, (2) single layers KC-3421 exhibits embayedand corroded edgesand or very thin packets of layers interstratified with seemsto be partially replacedby the associatedhal- berthierine(1e., mixed-layer chlorite-berthierine), and loysite(Fig. 2B). (3) crystals of relatively Fe-rich chlorite (designated Figure2E showsa compositegrain ofberthierineand hereafteras Fe-chlorite)that are intimately intergrown chloritepartly surrounded by muscovitein chalcopyrite- with mixed-layerchlorite-berthierine. In additionto the rich sampleKC-2505 from the coreof the stringerzone mixed layering, discrete,thick packes of berthierine (seeSlack & Coad 1989,Fig.2). This grain is clearly intergrownwith chlorite also are present,analogous to deformed, consistentwith the presencein the same theberthierine lamellae shown in Figure2F. sampleof microscopicchevron folds definedby de- Figure3 showsfypical relations between berthierine formedmuscovite, chlorite, and sulfides.Most of the and the three different types of chlorite. Each layer bordersof the compositegrain (Fig. 2E) containa thin silicate forms relatively thick, well-defined,discrete (<5 pm) rim of nearly end-member(Mg-free) berthier- packetsthat are parallel or subparallel,with berthierine ine, whereas the interior has very fine lamellae of and mixed-layer chlorite-berthierineoccuring prefer- berthierine<1 pm in diameter(Fig. 2D. The deforma- entially at the boundariesof chlorite crystals.The tion may havecaused bending and gliding of chlorite individualpackets of chloriteseem similar to thoseof layers,resulting in separationofthe layers and formation phyllosilicatesaffected by metamorphicprocesses that ofthe elongatelens-shaped voids. Packets ofberthierine locally approachan equilibriumstate, with an absence orientedparallel to thevoids also have a similarlens-like ofthe heterogeneousfeatures (e.9., mixed layering) that shape,and several ofthe voidscontain aberthierine rim, characterizetextures formed at very low temperatures althoughsome berthierine lamellae have different orien- (e.g.,Ahn & Peacor1985). However, packets of Fe- tationsand are not associaiedwith voids.One interpre- chlorite,Fe-Mg-rich chlorite,and chlorite in mixed- tation ofthesefeatures is thatthe chloriteand berthierine layerberthierine-chlorite occur immediately adjacent to representprimary hydrothermalprecipitates that were one another,a featurethat cleaily indicatesnonequili- deformedtogether, producing the parageneticallylate, brium conditions. lens-shapedvoids. Alternatively" berthierine may have Severaltypes of deformationfeatures are observed. formedby filling of deformation-relatedvoids or by the In the middle-right part of Figure 3 is a pale grey arca replacementof previouslydeformed chlorite. Similar with an arrowheadshape that separatesFe-Mg-rich lens-shapedreplacements of deformedphyllosilicates chloritethat presumablywas oncecontinuous, as the havebeen widely reported in low-grademetamorphosed outlineson bothsides of thearrowhead-shaped area are andhydrothermally altered rocks (Craiget al. I 982, van nearlyidentical. We areunable to identifythe material der Pluijm & Kaars-Sijpesteijn1984, Gregg 1986, Ahn within this anowhead-shapedarea, but it appearsto be & Peacor1987. Bons 1988). a noncrystallinephase containing Al, Si, K, Mg, Fe,S, Cu, andCl, assuggested by EDSspectra. The packet of Fe-Me chlorite that is dissectedby the arrowhead- Transmi s s ion ele ct ron micro s c opy

Part of a thin section of sample KC-2505 was preparedfor transmissionelectron microscopy (TEM) following opticaland SEM studies.A 3-mm-diameter areaadheringto analuminum washerwas detachedfrom the thin sectionand a Cu grid backing was attachedto oneside to preventthe possible loss ofthin edgesdue to differential thinning andexpansion-contraction rates of layer silicatesand sulfidesduring Ar ion-beammilling. A PhilipsCMl2 scanningtransmission electron micro- scoper coupled with a low-angle Kevex Quantum detector for EDS analysis was used for the TEM observationsat the University of Michigan. The 00/ reflectionsup to the third order (chlorite) were selected to produceone-dimensional laftice fringe images. Chlorite in sampleKC-2505 wasobserved to consist ofthree principaltextural types, including (l) discrete, Flc. 3. Transmissionelectron microscopic image of sample KC-2505 showingintergrowths of berthierinewith Fe-Mg chlorite (C), Fe-chlorite(C'), andmixed-layer chlorite-ber- lAny use of trade, product, or firm namesis for descriptive ttrierine(C/B). The pale grey anowhead-shapedarea in the purposesonly and does not imply endonementby the U.S. middle-rightis a noncrystallinephase (see text). The white Govemment. arrow indicatesa kinked areain chlorite. n32 T}IE CANADIAN MINERALOGIST

gliding alongboundaries with a componentnormal to the image.Variations in contrastoccur within someof the chlorite and berthierinepackets, apparently reflect- ing strain.The strain contrastat the crystalboundary in the middle-left part of the imagesuggests that thereis a lattice misfit, in agreementwith an origin dueto gtding along partially coherentinterfaces, as is normally the casein gliding facilitatedby dislocations.Such defor- mation featureshave not beenobserved in berthierine and mixed-layer chlorite-berthierine regions, which implies that someof the berthierineis probably syn- or post-deformationin origin, replacingdeformed chlorite or voids createdduring deformation. Selected-areaelecron-diffraction (SAED) patterns were obtained from different areasof Figure 3. The FIc. 4. Selected-areaelectron-diffraction pafterns of areasin SAED natterns are consistent with the presenceof Figure 3 showing 001 reflections of A) berrhierine, B) berthierine(7 A periodicity,Fig. 4a), chlbrite(t+ A Fe-Mg chlorite, C) mixed-layerchlorite-berthierine, and periodicity,Fig. 4B), andmixed-layer chlorite-berthier- D) chlorite + berthierine.The beamstopper was used for A ine (relativelyweak, diffuse odd-orderand strong, sharp andC. even-order00/ reflectionswhere d(001) - 14 A, Fig. 4C). The continuous^ along c'in Figure 4C shapedarea has a prominent kink (indicatedby the white suggeststhat the 14 A (chlorite) and 7 A (berthierine) arrow). Thicknesses of the packets next to that of the layers are randomly interstratified in the mixed-layer kinked packet vary along tire packet, consistent with areas.Like the interpretiveproblems of XRD patterns

Ftc. 5. lattice-fringe image of intergrown berthierine(B), Fe-Mg chlorite (C), and mixedJayer chlorite-benhierine(C/B) in sampleKC-2505. tayen showing-7 A (narrowfringes) and -t4 A lwiae fringes)periodicities are berthierine and chlorite, respectively.layer terminationsand complex mixed layeringbetween chlorite and berthierineare present in the middle right. BERTHIERINEFROM THE KIDD CREEK DEPOSIT I 133 discussedabove, it is difficult to differentiate 00/ stress(Bons et al. 1990).The berthierineand chlorite reflections of discrete berthierine r discrete chlorite packes in the lower part of the image seem to be (Frg.4D)from thoseof only discretechlorite (Frg.4B). unaffected.The slight variationsin contraston the right Packets of berthierine and mixed-layer chlorite- are principally due to decreasingthickness of the berthierineare locally parallelor subparallelto adjace4t specimentoward the thin edges.Mixed layering and packetsof Fe-Mg chlorite (Fig. 5). Individual 14 A interstratificationof packetsof nvo phyllosilicatephases layers are presentwithin the berthierine packet, and are commonin replacementreactions of onephyllosili- dilcontinuiiies between14 A and7 A hyers arepresent cateby theother (e.g- Banfield& Eggleton1988, Jiang in the mixed-layerarea. Such discontinuities may be due & Peacorl99l), althoughthey alsomay occurwithout to variationin the inclination ofc" alongthe layersor to phasetransitions. variations in crystal thickness (Amouric et al. 1988, An electron-diffractionpattern of berthierine (Fig. Jahren& Aagaard1989). However, in this casethey 7A) showsa highly disorderedsequence of stacking,as appearto representtrue interfacesbecause images that suggestedby the strongstreaks in the non-001reflection wereobtained at different conditionsoffocus all display row^swith k * 3n. The presenceof very weakstreaks and the samefeatures. 14A reflectionssuggests thatthere is aminorcomponent Figure 6 showsalternating thick packetsof berthier- of chlorite interstratified with the berthierine.Disor- ine andFe-Mg chlorite layersthat areparallel or related deredsequences of stackingare commonin phyllosili by low-angleboundaries. Such textures are analogous to catesthat formed during diagenesisor very low-grade thoseobserved in many occunencesof phyllosilicate metamorphism(Kisch 1983, 1987).Such disordered intergrowths that formed during prograde metamor- sequencestransform to orderedsequences during pro- phism(e.9., Franceschelli et a\.1986,Frey 1987,Jiang grade metamorphismbefore conditions of the lower et al. 1990).Tltevariation in contrastalong the layersin greenschistfacies are attained.Coexisting muscovite, the upper left reflects strain, presumablydue to shear having a nearly end-membercomposition, with only

Ftc. 6. tattice-fringe imageof sampleKC-2505 showingalternating packets of berthierine(B) and Fe-Mg chlorite (C) that are parallel or relatedby low-angleboundaries. 1134 THE CANADIAN MINERALOGIST

togetherwith more recent microprobedata (using the samemethods and standards),are presented inTable 2, The berthierinecontains nearly equal amountsof SiOt andA12O3, and most samples have little or no Na Ca or K. Many grains contain

TAALE2. REPRESEITATIVECSPOGITIOI{S OF BERTITIERIIIEAND CIIONIIE

8llp 813E 81lr 2505F1 405F2 g21B wA lilRAfl rURST cmBv USSR

slo2 ftZ 22.U u.62 21.99 a.a u.31 21.96 2,.8 4..47 21.26 ?2.41 ?2.40 At2gt A.0l ?3.05 u.21 23.15 8.51 ?531 a.A 4.24 4,61 4,12 23.9 rlo2 0.07 0.05 0.0t 0.04 0.01 0.03 n.o. n.d. n.a. n.a. F€ 42.m 41.37 42.t9 33.31 41.07 41.94 x,77 40.15 39.19 39.66 39,63 I'lrO 0. 0.16 0.tl 0.13 0,27 0.14 n... n.d. n.a. 1.9, ri@ 1,'t3 0.98 0.@ 7.1t 1.31 l.a 5, t9 1.77 2.92 2.72 2.01 Zm n.€! n.e. n.o. n.o. 1.0t n.a. n.a. n.a. n.6. 0,66 c€o 0.02 0.t0 0.02 0.03 0.04 0.00 0.01 0.lt n.d. n.a. n.d. ra20 0.0E 0.05 0.oa 0.04 0.01 0.02 0.00 n.d. n.o. n.d. (2q 0.u 0.51 0.t18 0.19 0.06 0.02 0.00 o.ot n.d. n.a, 0.n lotrl 89.35 89.15 47.54 87.'t0 84.5t 89.7? 88.t7 E8.12 E6.9E EE.t7 90.02

St@turut fo@lao o tho basls of 28 on€s

st 5.0t4 5.150 5.153 5.14 5.087 5,@ 5.066 t.l 4.qr4 ,.162 5.M5 Attv 2.96 2.450 2.97 2,An 2.913 3.000 2.914 2.82 3.@6 2.898 2. 5 Atvr t.27 3.136 3.M l. t9:t !.406 3.50 3.225 t.472 t.au 1.ll1 '.241 rr 0.012 0.0@ 0.006 o.ott8 0.@7 0.(X)t 0.006 0.005 0.(Xx, o.qD 0.000 r€ 8.155 7.876 8.424 6.196 7.& 7.9@ 6.85? 7,632 7.t 9 7.506 7,465 lln 0.Ct0 0.(Xl 0.0:t! 0.027 0.05 0,052 0.0?i 0.000 0.(X|0 0.0&t 0.t22 Is 0.386 0.tJ4 0.(n0 2.36:t 0.446 0.418 1.724 0.600 t.(xB 0.917 0.68 Zn 0.000 o.0lt0 0.000 0.000 0.000 0.172 0.000 0.000 0.tx)o o.ol!0 o.tlo Ca 0.004 0.021 0.004 0.00E 0.011 0,000 0.003 0.022 0.000 0.000 0.000 I! 0.037 0.1@ 0.025 0.03t 0.017 0.006 0.0@ 0.(X'0 0.0q) 0.000 o.qx) r 0.011 0.149 0.052 0.017 0.005 0.001 0.@0 0.0@ 0.000 0.088 lotal 19.882 19,4n 19.800 t9.881) 19.763 19.W 19.95 l9.6Et 9.An 19.754 t9.E9E

oct Va@y 0..|7() 0.403 0.41 0.213 0.42 0.127 0.167 0.341 0.113 0.246 0.185 rol(Fdils) 0.955 0.959 1.000 0.7u 0.950 0.9& 0.7,D 0,927 0.88 0.891 0.917 lg/F6 0.U7 0.042 o.o{d 0.31 0.057 0.052 0.42 0.079 0.1l] 0.1?2, 0.0911

Not4r Total lM 6 f60t n.a. s mt @lyred or mt r€poft€di n.d. s tut d6t*ted. E130! berthlorlm @6l6tod rlth td@(|re. pyrlto. Elmf aphal€rlte and tl8rtz, and tre6 ol aerlclte (tr@ Stek & Cosd t989, lobt6 2); 813E. borthlerlre a$el6ted rlth qertr. sphalorlto. f'yrlte, td@tire, ard olrcr erlcltei 81!f: berthlerlre dslat€d rlth pyrlt6, qetta, sphal6rlt6, and Flrcr a€rlcltai 2505il! chtorlto Intorgr@ rlth borthlorlG ard s@lated rlth so.lclto, chatcoFyrlto, dd olmr qe|tz (@ Flg. zr)i 2505F2: borthlorlre lnto.tr@ rlth chtorlte €fd arsl6ted rlth &rlclt6. chalcopyrlte. oid olrcr qwm? (se flg. 2r)t 342'lB3 berthlorlE delated dth @llclto, sphslerlto, std almr cholcoFyrlte aid @sltorlto (@ Flg, 2r)t 348243 bo.thloflre @slated rlth t@@tlm. qd.t., pyrlto, sFhglo.lto, dld olmt aetlclta (ff@ Strcl g Co€d 1989, table 2)t ttRff{! K-typo berthlorlm of fiji@ & I,tat@to (19Aa, t€bt€ 4) ln Trleslc flrslay b.ds ff@ lll.@tau arc€, Japoi xuls(! berthl€rlc ln baulte d€p@lt8 fr@ fq.sk, ussR (yoFhoE et s!. 19?6r; conBtt b€rthl€rlre ln Jqraedtc lr@t@ ff@ co.by, Iorth!ryt@hlro, ua (lrlidtq/ & Y@tt 1953)t ussR: bofthlerlre ! chlorlto ln Ag-pb-zn qertz wln, ussR (R6lrcw ot at. 1987).

chloritecompiled by Foster(1962) and Velde (1973). However,the berthierine and chlorite from Kidd Creek differ slightly in relativeproportions of Al andR2+ (Fe2+ + Mg + Mn + Zn) cations.The Kidd Creekberthierine and thosesamples listed in Table2 from Corby(Eng- land),Hiramatsu (Japan), and the USSR(not plotted), all are more aluminousthan the Kidd Creek chlorite. Note that in deformedsample KC-2505 (Fig. 2D, the microprobedata reported in Table 2 for the berthierine lamellae (2505F2) also indicate a more aluminous ',ii@)) compositionthan that ofthe coexistingchlorite (2505F- l). With the exceptionof sample2505, this probablyis unrelated to the extent of octahedral-sitevacancies" which spana similar rangein the berthierine(Table 2) andchlorite (Slack & Coad1989, Table 2).

R2 DIscussIoN Ftc. 8. Cationplot of averagemicroprobe compositions of chlorite(open circles) and berthierine(solid triangles)at Kidd Creek compared to the compositional fields of Berthierine is a common mineral in many Fe-rich chloritescompiled by Foster(1962) and Velde (1973) and sedimentaryrocks, especially ironstones and forma- thefield of ber*rierines(hatchured) from Brindley(1982), tions (e.g., French 1973, Bhattacharyya1983, Van Iijima & Marsumoro^(1982),Bhattacharyya (1983), and Houten & Purucker 1984, Maynard 1986). Recent Velde( I989).R' = Fez*+ Me + Mn + Zn. mineralogicalstudies also have identified berthierinein tt36 soilsand bauxites (Kodama & Foscolos1981, Nikitina basedon the low solubilityof Al in mosthydrothermal I 985),unmetamorphosed coal measures of Japan(Iijima solutionsand the very low AVFeratios of end-member & Matsumoto1982), diagenetically altered clastic sedi (Mg-free)compositions calculated for fluids sampledat mentsof the Gulf Coast(Ahn & Peacor1985), clastic modernsubmarine vents (Bowers & Taylor 1985,Von reservoirsofoffshore Norway(Jahren & Aagaard1 989), Damm & Bischoff 1987). We cannot exclude the conglomeratesfrom England(Taylor 1990),and some possibility, however,that some of the Kidd Creek low-grade pelitic schists from Yenezuelaand Spain berthierineprecipitated directly from hydrothermalso- (Amouricet al. 1988,Bons & Schryvers1989). Docu- lutions, like the illite-smectite recently discoveredby mented occurrencesof berthierine in hydrothermal Alt & Jiang(1991) from massivesulfide deposits on the settingsare less extensive, and mainly involvesulfide- seafloor. bearingveins such as in France(Cailldre & HdninI 956), Textural relationsand experimentalwork (Yaluet al. Czechoslovakia(Novak et al. 1959),England (Smith & 1987) suggestthat the initial formation of berthierine Hardy 1981),the former Soviet Union (Rusinovaer a/. may have involved gowth from an illite-smectite 1987), and Niger (Perez et al. I 990);berthierine also has precursor(e.g.,Fig.2C), or possiblya kaoliniteprecur- been reported recently from hydrothermally altered sor (Bhattacharyya1983, Nikol'skaia et al. 1985)that shalesin the Salton Seageothermal field of Califomia reacted with Fe-rich hydrothermal fluids. The latter (Yau et al. 1988,Walker & Thompson1990). The interpretationis consideredless likely, on the basisof berthierineidentified from the Kidd Creekmine in this the observedparagenetic relations among berthierine, study representsthe first known occurrencein subma- muscovite,and halloysitein the Kidd Creeksamples. rine massivesulfide environments. Smectitealso is not a favoredprecursor because of the lack of significantNa or Ca recordedin the microprobe F ormnt ion of be nhie rine data for the berthierine(Table 2), althoughNa and Ca could have been leached from smectite during hy- Possiblemechanisms for the formationof the Kidd drothermalalteration to berthierine.Most, if not all, of Creekberthierine involve hydrothermal, metamorphic, the premetamorphicberthierine at Kidd Creek is be- and postmetamorphicprocesses. Interpretations of pre- lieved to haveformed by the hydrothermalreplacement metamorphichydrothermal growth are based on the of pre-existingmuscovite or chloriteat temperaturesof presenceof largeprismatic crystals in pristinesample approximately350'C (Slack & Coad 1989), which KC-j421 (Fig. 2C), and on equilibriumtextures ob- producedthe observedembayment textures and euhe- servedin relatively undeformedsamples such as KC- dral pseudomorphs. 813 (Fig. 2D) that are similar to those observedin Evidencein support of a syn- or postmetamorphic modernsulfide deposits from the seafloor (e.g., Alt et origin for some of the berthierinecomes mainly from al. 1987,Alt & Jiang 1991),where mineral grains texturalfeatures documented by SEMand TEM studies. commonlyare euhedral and form straightcontacts with Theseinclude the lamellar intergrowthsobserved in layersilicates, presumably as a resultof crystallization deformedsample KC-2505 (Frg. 2D, and the relations in a stress-freeenvironment. betweendeformed chlorite andundeformed berthierine Experimentalstudies also are consistentwith a hy- illustratedin the latticefringe imagesof the samesample drothermalorigin for someof the Kidd Creekberthier- (Figs. 3, 5). The latter textures are common in inter- ine. All of the synthesiswork done to date on chlorire grown stacksof phyllosilicatesthat formed as stable hasmade Z A, not 14 A phases,as initial run products coexistingassemblages in low- to medium-grade,green- (a.9.,Nelson & Roy 1958,Turnock 1960). In a detailed schist-faciesrocks (e.9., Franceschelli et al. 1986,Frey studyof the stabilityof iron-richchlorite, James et al. 1987, Jianget al. 1990)and in phyllosilicateaggregates (1976)synthesized,T A Fe-richsilicate at 300'C and2 that formed through partial replacementof a precursor kbar P(H2O),whereas crystallizarion of 14 A Fe-rich phase(e.9., Jiang & Peacor1991). We cannotdiscrimi- chlorite required longer run times (six weeks) at tem- natebetween syn- and postmetamorphicgrowth of this peraturesin excessof 525oC.More recently, Nikol'skaia berthierine,but regardlessof the timing, it seemslikely et al. (1985) formed berthierineby reacting thatit replacedpre-existing chlorite, either ofhydrother- with FeCl3at 400"C,and Yau et al. (1987)synthesized mal or metamorphicorigin. The Fe necessaryfor the berthierinet illite at 300"C from an interlayeredillite- formation of this metamorphicberthierine may have smectite precursor. These experiments show that comefromtherims of tourmalinecrystals in thefootwall berthierine,although probably metastable, may form in stringer zonethat were leachedof substantialamounts hydrothermalsystems at relatively high temperaturesof of Fe, Ti, andCa (Slack& Coad 1989,Figs. 5, ll), 30H00"C. The infened hydrothermalberthierine from possiblyduring the late metasomatic event documented Kidd Creek is believed to have formed under similar in the mine areaby Maaset al. ( 1986).The formationof temperatureconditions (a.9., Slack & Coad1989). The theFe-chlorite may have involved alteration ofberthier- formation of the hydrothermal berthierine probably ine in the later stagesof multiple metamorphicevents in occurredby replacementof a pre-exisiting aluminous theregion, identified by Brisbinet al. (1990)and Barrie phase,rather than by direct precipitationfrom solution, & Davis(1990). BERTHIERINEFROM THE KIDD CREEK DEPOSIT tt37

Prese rvation of hydrothermal benhierine ite" (i.e., berthierine)where alteration and mineraliza- tion asssociatedwith an earlierhydrothermal event were Berthierineis generallyco-nsidered to be a metastable believedtohave sealed offthe footwall zoneof alteration phase that inverts to 14 A Fe-rich chlorite during from infiltration by Mg-rich seawater.The recognition diagenesisand metamolphism.In clastic sediments, of berthierine in the deposit, however, requires a re- berthierine is preferentially found at shallow depths evaluationof this interpretation. relative to Fe-rich chlorite, which commonlyis coarser Slack& Coad(1989) proposed the existenceof two grained and parageneticallylater than the associated hydrothermalevents in the Kidd Creekdeposit, in which berthierine(Frey 1970,1978, Lee & Peacor1983, Ahn early formation of Fe-Mg chlorite and tourmalinewas & Peacor1985). Velde et al. (1914)suggested that in followed by a secondevent that chemicallyoverprinted arenitesand calcarenites,7 A berthierineundergoes a the chlorite to form daphnite(1e., berthierine), whereas polymorphictransformation to 14A chlorite at tempera- the compositionsof the chemically more resistant tures of 25-100'C. Similar relationsare observedin tourmalineremained unaffected. However. the SEM and hydrothermallyaltered sediments from the Salton Sea TEM observationsof complex berthierine--chloritein- geothermalfield, whereberthierine is found in shallow, tergrowthssuggest instead that mostof the 7 A berthier- low-temperaturesettings relative to the deeper,higher ine formedfirstfrom anFe-rich" end-memberhvdrother- temperatureoccurrences of Fe-rich chlorite (Yau et al. mal fluid andth atthe 74 A Fe-Mg chlorite formedlater 1988,Walker & Thompson1990). from a seawater-dominatedfluid; quartz, tourmaline, The presencein sampleKC-3421 of large(100-200 and sulfides apparentlywere precipitatedduring both pm) prismatic crystals of berthierine together with events of fluid circulation. Thesemineralizing events halloysite(Figs. 2A, B), a likely metastableprecursor to need not have been separatedby a significant time kaolinite (Churchman& Can 1975. Steefel& Van interval,howevel and could have been part of one CappellenI 990), suggests that this Kidd Creekberthier- long-lived seafloorhydrothermal system. The apparent ine is a primary hydrothermal phase and that the disequilibriumbetween the Fe/(Fe+Mg)ratios of chlo- halloysite formed by late hydrothermalprocesses, as rites and tourmalinerims suggestedby Slack& Coad discussedabove. The preservationof berthierine and (1989)therefore may not indicatethe presenceof two halloysite in this samplemay reflect the armoring of unrelatedhydrothermal fluids in the footwall stringer layer silicatesby massivesulfide, thus preventing zone.but insteadcould reflect the occurrence ofberthier- interaction with metamorphicfluids that would have ine (ratherthan daphnite)in sampleswith Fe/(Fe+Mg) convertedthese silicates to Fe-richchlorite andkaolinite ratiosthat fall offthe equilibrium Kp curvesfor chlorite (or illite), respectively.This interpretationis supported andtourmaline (see Slack & Coad1989, Fig. 13). by the fact that samplescontaining tourmaline with a metamorphicreacticifr-rim (Slack & Coad 1989)have Im.plicationsfor modernand ancientvolcanogenic chlorite but little or no berthierine.whereas tourmaline mnssivesulfide deposits crystalsin othersamples that containabundant berthier- ine (e.9., KC-813) show little or no evidencefor The recognitionof berthierinein the Archean Kidd interactionwith a metamorphicfluid (i.e.,absence of a Creek massivesulfide deposit has implicationsfor reactionrim). similarancient, as well asmodern, volcanogenic sulfide deposits.Particularly interesting are the calculatedsta- Evolution of the Kitd Creekstringer zone bility-relations of berthierine relative to other Fe-Al silicates(Fig. 9). This diagramwas constructedfor a Many electron-microprobestudies have shown that temperatureof350oC under conditions ofquartz satura- massivesulfide depositsare dominatedby Mg-rich tion using thermodynamicdata from SUPCRT (see chlorite, but that some depositscontain local Fe-rich Bowerset al. 1984,and referencestherein), except the chlorite [Fe/(Fe+Mg)> 0.8], assummarized by Urabeel free energyand-enthalpy data for daphnite(14 A) and al. (1983)and Slack & Coad(1989). The inner cores of berthierine("7 A chamosite"),which are from Wolery footwall zonesof alterationin the depositsmay show (1978,Table 2). Despiteuncertainties in the thermody- preferential concentrationof either Mg- or Fe-rich namic data,the calculationsshow that berthierinehas a chlorite,relative to peripheralzones (e.9., Franklin et al. similar, but smaller field of stability relative to that of 1981,Urabe et al.1983,Gustin 1990). Such composi- daphnite( I 4 A Fe-rich chlorite),and therefore probably tional variations in chlorite chemistry are generally is metastable.Based on texturalrelations (e.g.,Fig.2D), attributed to precipitation from solutions containing the Kidd Creekberthierine and muscoviteappear to be variable proportions of Mg-rich seawaterand Fe-rich coeval and may have formed under equilibrium condi- hydrothermalfluid (Robets & Reardon l978,Ziercn- tions in some of the samples,in agreementwith the berg et al. 1988).The compositionalvariations of the thermodynamicrelations. In a recentstudy of Ag-Pb- Kidd Creekchlorite were interpretedby Slack & Coad Zn polymetallicveins in the Ukraine,Rusinova e/ a/. (1989)in a similarmanner: the Fe-Mg chloriteformed (1987) determinedthat berthierineformed simultane- first and was overprintedor replacedby Fe-rich'thlo- ously with sericite and K-feldspar.The apparenttheo- 1138 T]{E CANADIAN MINERALOGIST

GalapagosRidge (Embleyet al. 1988)and the Kane FractureZone of the Mid-Atlantic Ridge (DeLaneyet al. 1987),where reported Fe-rich chlorite likely contains minorto majoramounts of berthierine. The difficulty of identiffing berthierineby routine optical,X-ray, and electron-microprobemethods sug- geststhat much of the Fe-rich chlorite reportedfrom \.-4.21"N modernand ancientmassive sulfide depositsmay in- Berthierine stead be berthierine. Recognition of premetamorphic berthierinein such depositsis importantbecause it recordsthe preservation of primarymineral assemblages Daphnite depositedby parageneticallyearly, Fe-rich hydrother- mal fluids. Additionalmineralogical studies integrating SEM,TEM, andelectron-microprobe data are neededon Kaolinite layersilicates from otherunmetamorphosed or weakly metamorphosedmassive sulfide deposits on land, and from moderndeposits on thesea floor. Suchstudies will be usefulfor accuratelydocumenting mineral composi tionsand paragenetic relations in alterationzones related to massivesulfide deposits,and for improving our understandingof fluid-rock reactionsin submarine log (a6+/ap+) hydrothermalsystems.

Ftc.9. Activity diagramshowing stability relations of minerals ACKNOWLEDGEMENTS in the systemFeG-K2G-AI2O3-SiO2-H2O at 350"C and 500bars. Activities of mineralsand H2O are set at 1.0under The seniorauthor thanks L.T. Bryndziafor urging conditionsof quanz saturation.Thermodynamic data and X-ray verificationof theKidd Creek"daphnite", which calculationsfrom SUPCRT(see Bowers et al. 1984,arrd providedthe basis for this study.We alsothank the late referencestherein) except free energy-andenthalpy data for J.W. Hostermanfor acquiringthe XRD data, C.A. (14 ("7 A which daphnite A) andberthierine chamosite"), preparation,andJ.V. Emery arefrom Wolery ( 1978,Table 2). Datapoints for end-mem- Consolvoforhelpin sample bervent fluids from 2l"N (OBS)and the southemJuan de and J.J.McGee for SEM imaging.We are gratetulto Fuca Ridge (Plume) were calculatedby J.K. Btihlke H.T. Evans,Jr., for the identificationof the halloysite, (USGS)using the program SOLVEQ (Reed 1982, Spycher andto J.K. Biihlke for assistancewith thermodynamic & Reed1989) and the fluid compositionsreported by Von calculations.Translations of Russian articles were Dammet a/. (1985)and Von Damm& Bischoff(1987), kindly suppliedby N. Tamberg.We thankG.R. Robin- respectively.Note smallerfield of stabilityof berthierine son, Jr. and J.K. Biihlke for commentson an early (dashed)relafive to that of daohnite. versionof the manuscript,and Jung-HoAhn and J.E. Chisholmfor journal reviews.The scanningtransmis- sionelectron microcope used in this studywas acquired undergrant EAR-87-O8276 from the NationalScience Foundation,and was partially supportedby NSF grants EAR-88-17080and EAR-86-'04170to D.R. Peacor. refical incompatibility of this assemblage(Fig. 9) may We alsoacknowledge the staff andmanagement of Kidd bean artifact ofthe thermodynamicdata-base, however, CreekMines and FalconbridgeLimited for providing particularlythe position of theK-feldspar - muscovite- undergroundaccess and drill corefor study. quartzbuffer, andtherefore does not necessarilyconflict with the parageneticobservations of Rusinovae, a/. REFERENCES (1987)for the vein depositsthey studied. The thermodynamicdata also permit an evaluationof AHr, JuNc-Ho & PEAcoR,D.R. (1985): Transmission electron the stability of Fe-silicatesin modernsubmarine hy- microscopic study of diagenetic chlorite in Gulf Coast drothermalsystems. Calculated compositions of end- argillaceous sediments.Clays Clay M inerals 33, 228-236. membervent fluids at 350oCfrom theOBS site at 21oN (1987): on the EastPacific Rise and from the Plumesite on the - & - Kaolinization ofbiotite: TEM data and implications for an alteration mechanism. Am. Mineral. southernJuande FucaRidgeare both within the stability 72.353-356. field ofberthierineGig. 9). Suchrelations suggest that metastableberthierine may be currently forming in the ALBEE,A.L. (1962): Relationships between the mineral asso- subsurfacefeeder zones of these active submarine ciation, chemical composition and physical properties of hvdrothermalvents. Additional candidatesinclude the the chlorite series.Am. Mineral.47. 85 I -870. BERITIIERINE FROM'ITIE KIDD CREEK DEPOSIT tt39

Arr, J.C.& JrANc,WEr-TEH ( 1991 ): Hydrothermallyprecipita- Bnrssr.l,D., Ksr-r-v,V. & Coor, R. (1990):Kidd Creekmine. ted mixedJayer illite-smectite in recent massivesulfide /z Geology and Ore Deposits of the Timmins District, depositsfrom the seafloor. Geology19,570-573. Ontario (J.A. Fyon & A.H. Green, eds.).Eighth IAGOD Symp.,FieM Trip Guidebook6; Geol. Surv. Can., Open- -, Lollsoalr, P., HAyMoN,R. & MusrnrNBAcHs.K. FileRep.216l,66-76. (1987):Hydrothermal sulfide and oxide deposirson sea- mountsnear 2loN, EastPacific Rise. Geol. Soc. Am. Bull. Cll-t-ERE,S. & HENnq,M.S. (1956):Sur la pr6sencede la 98, 157-168. berthidrinedans une diaclase du gisementde Didlette. C.R. CongrdsSoc. Savantes Paris 81,5-8, Avolzuc, M., Grerprro, I. & PRousr,D. (1988):7, 10,and 14 A mixed-layerphyllosilicates studied structurally by TEM CHURCHMAN,G.J. & Cann,R.M. (1975):The definitionand in pelitic rocks of the Piemontesezone (Yenemela). Bull. nomencfatureof halloysites. Clays Clay Minerals 23, Mintral.lLL,29-37. 382-388.

Ban-pv,S.W. (1988):Structures and compositionsof other CoAD,P.R. ( I 985):Rhyolite geology at Kidd Creek- aprogress trioctahedralI : I phyllosilicates.,& HydrousPhyllosilicates rcWrt.Can. Inst. Mining Metall. Bull.78(874),70-83. @xclusiveof Micas)(S.W. Bailey, ed.). ftay. Mineral. 19, I 69-I 88. Cnarc,J., Fncues,W.R. & MALTMAN,A.J. (1982):Chlorite- stacksin low-strain rocks from cenEalWales. Geol. - &. Ltsmn, J.S. (1989):Structures, compositions, and Mag.119,243-256. x-ray diffraction identification of dioctahedralchlorites. Clays Clay Minerals 37, 193-202. Cums, C.D.,HucHEs, C.R., WHTTEMAN, J.A. & WHtrruE,C.K. ( I 985): Compositionalvariations within somesedimentary BANFTELD,J.F. & Eccleror, R.A. (1988):Transmission elec- chloritesand some comments on their origi4.Mineral. Mag. tron microscopestudy of biotite weathering.Clays Clay 49,375-386. Minerals36,47-60. Drer, R.S. (1983): Authigenictrioctahedral clay minerals BARRTE,C.T. &Davrs,D.W. (1990):Timingof magmatismand coating ClearwaterFormation sand gains at Cold lake, deformationin the Kamiskotia- Kidd Creekarea- westem Albe(a Catada.20thAnn. Mtg., Clay Mineral. Soc.,79 Abitibi Subprovince,Canada. Precambrian Res. K,217- (absr.). 240. DELANEv,J.R., Mocr, D.W. & MorL, M.J. (1987):Quanz- BHerrecHanyya,,D.P. (1983):Origin ofberthierinein - cementedbreccias from the Mid-Atlantic Ridge: samples tones.Clays C lay M inerals 3I, 173-182. of a high-salinityhydrothermal upflow zone.J. Geophys. Res.92,9175-9192. BoNs, A.-J. (1988): Deformationof chlorite in naturally deformedlow-grade rocks. Tectonophys. 154, 149-165. EMBLEY,R.W., JoNAssoN, I.R., PERFrr, M.R., FnaNru-n, J.M., TrvEy, M.A., MALAHoFF,A., SMnH, M.F. & FneNcrs, -, DRURY,M.R., ScHnyvrns,D..& ZwARr,H.J. (1990): T.J.G. (1988): Submersibleinvestigation of an extinct The natureof grain boundariesin slates.Implications for hydrothermalsystem on the GalapagosRidge: sulfide masstransport processes during low tempemfuremetamor- mounds.stockwork zone. and differentiatedlavas. Can. phism.Plzys. Chem. Minerals 17,442408. Mineral.26,517-539.

- & Scunwrns, D. (1989): High-resolutionelectron FosrEn,M.D. (1962):Interpretation of the compositionand a microscopyof stackingirregularities in chloritesfrom the classificationofthe chlorites.U.S. Geol. Surv., Prof. Pap. cenu"l Pyrenees.Am. Mineral.74, 1113-1123. 414A.,t-33.

BowERs,T.S., JecrsoN, K.L. & Hsr-cpsor, H.C. (1984): FneNcrscusLLr,M., Mpr-r-rNI,M., Mgvur, I. & RIccI, C.A. EquilibriunrActiviry Diagramsfor CoexistingM ineralsand (1986):Fine-scale chlorite-muscovite association in low- AqueousSolutions at Pressuresand Temperaturesto 5 kb grade metapelitesfrom Nurra (NW Sardinia), and the anl 600' C. Springer-Verlag,Berlin. possiblemisidentification of metamolphicvermiculite. Contrib. M ineral. Petrol. 93, 137- | 43. - &Tenon, H.P.,JR. (1985): An integratedchemical and stable-isotopemodel of the origin of mid-oceanridge hot FRANKLTN,J.M., LyDoN,J.W. & SeNcsrsn,D.F. (1981): spring systems."/. Ge op hy s. Res. 9O,12,583- 12,606. Volcanic-associatedmassive sulfi de deposits.Econ. Geol., 75thAnn. Vol..485-627. BRTNDLEv,G.W. (1951):The of somechamo- siteminerals. Mureral. Mag. 29, 502-525. FnaNsour, A.-M. & BouRGUlcNoN,P. (1975): Donndes nouvellessur la fraipontite de Moresnet(Belgique). BzlL - (1982): Chemicalcomposifions of benhierines- a Soc. F rang.M inl ral. C ristallo gr. 98, 235-244. review.C/ays Clay Minerals30, 153-155. FnrNcu,B.M. (1973):Mineral assemblages in diageneticand - & YouELL,R.F. (1953):Ferrous chamosite and ferric low-grade metamorphiciron-formation. Econ. Geol. 68, chamosite.M ineral. M ag. 30, 57-7 0. 1063-t074. I 140 T'I{ECANADIAN MINERALOGIST

FREY,M. (1970):The stepfrom diagenesisto metamorphism rine in CanadianArctic desertsoils. Can. Mineral. 19, in pelitic rocksduring Alpine orogenesis.Sedinentol.15, 279-283. 261-n9. LEE,J.H. & Pracon, D.R. (1983):Interlayer transitions in - (1978):Progressive low-grade metamorphism of a black phyllosilicatesof MartinsburgShale. Nature 303, 608-609. shaleformation, central Swiss Alps, with specialreference to pyrophyllite and margarite bearing assemblages."/. LyooN,J.W. & GALLEY,A. (1986):Chemical and mineralogr- Petrol.19.95-135. cal zonationof the Mathiati alterationpipe, Cyprus,and its geneticsignificance. /n Metallogenyof Basicand Ultraba- - (1987): The reaction-isogradkaolinite + quartz = sic Rocks(M.J. Gallagher, R.A. Ixer, C.R.Neary & H.M. pyophyllite + H2O, Helvetic Alps, Switzerland.Schweiz Prichard,eds.). The Institutionof Mining andMetallurgy, Mineral.Petrogr. Mitt. 67, 1-ll. London(49-68).

Gnsac,W.J. (1986): Deformation of chlorite-micaaggregates MAAS,R., McCulleH, M.T., CeMpssLL,I.H. & Coeo, P.R. in cleavedpsammitic and pelitic rocks from Islesboro, (1986):Sm-Nd andRb-Sr datingof an Archeanmassive 14, Maine,U.S.A. "/. Struct. Geol.8,59-68. sulfidedeposit: Kidd Creek,ontario. Geology 585-588. Gus'nN,M.S. (1990):Stratigraphy and alterationof the host MARUMo,K. (1991):A comparisonof mineralassemblages in rocks, United Verde massivesulfide deposit,Jerome, the alteration haloes of the Middle Miocene Kuroko Arizona. Econ. Geol. 85, 2949. deposilsin Japanand their modernanalogue (Jade) in the backarc Okinawa Trough. Geol. Assgc.Can. - Mineral. Havasur,H. & Orxuve, K. (1964):Aluminian chlorite from Assoc.Can., Program. Absrr. 16, A80. Kamikitamine, Japan. Clay lci.2,22-30. MAvNARD,J.B. (1986):Geochemistry of oolitic iron otes,an HEy, M.H. (1954):A new review of the chloriles.Mineral. electronmicroprobe study. Econ. Geol. 81, 1473-1483. Mag.30,277-292. NnsoN, B.W. & Roy, R. (1958):Synthesis of thechlorites and Iuu'ae,A. (1974):Clay and zeolitic alteration zones sunounding their structuraland chemical constit:t\tio . Am. Mineral. 43, Kurokodeposits in the Hokurokudistrict, northem Akita, 7M-725. as submarinehydrothermal-diagenetic alteration products. Mining Geol.,Spec. Issue 6,267-289. NrKrrNA,A.P. ( 1985):Distribution andgenesis of clayminerals and free alumina mineralsin the depositsof residual - & Mersuvoro, R. (1982):Berthierine and chamosite bauxitesin the Europeanpart of the USSR.In Proc.5th in coal measuresof Japan. Clays Clay Minerals 30, Meet., EuropeanClay Groups(J. Konla ed.). Charles 26+274. University,Prague (35 l-357).

JAHREN,J.S. & Aecaeno,P. (1989):Compositional variations NrKoL'sKArA,N.K., Korov, N.V., FneNr-KeMENETsKn,V.A. in diageneticchlorites and , and relationshipswith & Gon-o,E.A. (1985):Hydrothermal transformations of formation-waterchemistry. Clay Minerals 24, 157-170. kaolinite in iron-bearingmedia at elevatedP1129-T panrme- ters. VestnikLeningrad Univ. Geol. Geogr.14,8-14 (in JAMES,R.S., TuRNocK,A.C. & Fewcerr, J.J. (1976):The Russ.). stabiliryand phase relations of iron chloritebelow 8.5 kb PH2s.Contrib. Mineral. Petrol. 56, l-25. Nover, F., V'rELENsKy,J., Lossnr,J., KupKA,F. & V.clcne, Z. (1959): Orthochamosit,ein neuesMineral aus den JrANc,WEI-TEH, EssENE, EJ. & Pracon, D.R. (1990):Trans- hydrothermalenErzghngen von Kank bei Kutnd Hora missionelecron microscopic study of coexistingpyrophyl- (Kuttenberg)in der Tschechoslowakei.Geologie 8(2), lite and muscovite:direct evidencefor the metastabilityof 159-167. illire. Clays Clay Minerals 38,225-240. Nur.rss,P.D. & Pvrr, D.R. (1981):Time-stratigraphic correla- - & PEAcoR,D.R. (1991):Transmission electron micro- tion of the Kidd Creek orebodywith volcanic rocks south scopicstudy ofthe kaolinitizationofmuscovite. Clays Clay of Timmins, Ontario, as inferred from zircon U-Pb ages. Minerals39, l-13. Econ.Geol. 76.944-951 .

KlscH,H.J. ( 1983):Mineralogy and peuology of burialdiage- PERcrvAL,J.A. & KRocH,T.E. (1983):U-Pb zircongeochro- nesis(burial metamorphism)and incipient metamorphism nologyof the Kapuskasingstructural zone and vicinity in in clasticrocks. 1z Diagenesis in Sedimentsand Sedimen- the Chapleau-Foleyetarea, Ontario. Can. J. Eanh Sci.20, tary Rocks,2(G. Larsen& G.V. Chilingar,eds.). Elsevier, 830-843. New York (289493). PEREZ,J.-B., Dusausov, Y., BasrtNr, J. & Pecsl, M. (1990): - (1987):Correlation between indicaton of very low- Mn zonationand fluid inclusionsin genthelvitefrom the grademetamorphism. /r Low TemperafureMetamorphism Taghouajicomplex (Air Mountains,Niger). Am. Mineral. (M. Frey,ed.). Chapman and Hall, New York(227-3N\ 75.9W-914.

KoDAMA,H. & Foscolos,A.E. ( 1981): Occurrenceof berthie- Reeo,M.H. (1982):Calculation of multicomponentchemical BERITIIERINE FROM TTTEKIDD CREEK DEPOSIT ll4l

equilibria and reaction processesin systems involving TsUKAHARA,N. (1964): Dioctahedralchlorite from the Furu- minerals,gases and an aqueousphase. Geochirn. Cosmo- tobemine, Akita Prefecnre,Japan.Chy 9ci.2,56-75. chim.Acn 46.5l3-528. TuRNocK,A.C. (1960):The stability of ironchlories. Camegie REyNoLDs,R.C., Jn. (1988):Mixed layerchlorite minerals. In Inst. Wash.,Yearbook 59,98-103. HydrousPhyllosilicates (Exclusive of Micas)(S.W. Bailey, ed.).Rev. M ineral. L5, 601-629. Uness,T., Scorr, S.D. & HArroRr,K. (1983):A comparison of footwall-rockalterafion and geothermal systems beneath Rrcuenos,H.G., CerN, J.R. & JrNsrNrus,J. (1989):Mineralo- someJapanese and Canadian volcanogenic massive sulfide gical zoning and metasomatismof the alterationpipes of deposits.Econ. Geol.,Monogr. 5, 345-3U. Cyprussulfide deposits. Ecoz. Geol. M,91-115. UTADA,M., MNAro, H.,IsHIKAwa,T. &Yosuzan,y.(1974)l RoBERN,R.G. & ttranooN, E.J.( 1978):Alteration and ore-for- The alterationzones surrounding Kuroko-type deposits in ming processesat MattagamiLake mine, Quebec.Can. J. Nishi-Aizu district, Fukushimahefecture, with emphasis Eanh Sci.15. l-21. on the analcimezone as an indicator in explorafionfor orc deposis.Mining Geol.,Spec. Issue 6,291-302. RusrNove,O.V., Konrsrv, B.M.,Feoosova, S.P. & GURENKo, O.Yu. ( 1987):Benhierine-+hlorite mixtures in hydrother- VAN DERPr-uru, B.A. & K,cens-SupssrEtrN,C.H. (1984): mal deposis. Bull. Moslc Obshchest.Pridody, Otd. Geol. Chlorite-mica aggregates:morphology, orientafion, deve- 62,100-105(inRuss.). lopment and bearing on cleavageformation in very low- graderocks. "L Struct. Geol. 6,399407. Suau, YpN-HoNc,PEAcoR, D.R. & EsseNs,E.J. (1990): Conensiteand mixedJayer chlorite/corrensitein metaba- VAN HourEN,F.B. & PunucrER,M.E. (1984): - salt from nonhemTaiwan: TENI/AEM, EPMA, XRD, and peloids and chamositic ooids favorable factors, opticalstudies. Contrib. Mineral. PetroL lA5, n3-142. constraintsand problems. Earth Sci.Rev.20,211-243. (1973): SHtRozu,H. (1974):Clay minerals in alteredwall rocksof the Velor, B. Phaseequilibria in thesystem MgO-Al2Or- Kuroko-typedeposits. Mining Geol.,Spec. Issue 6,303- SiO2-H2O:chlorites and associatedminerals. Mineral. 310. Mag.39,297-312. (1989):Phyllosilicate formation in berthierinepeloids .------Serasecawe, T., Karsuuoro, N. & OzAKr,M. ( 1975): - iron oolites./n PhanerozoicIronstones (T.P. Young & Mg-chlorite and interstratifiedMg-chlorite/ asso- and eds.).Geol. Soc. Inndon, Spec.Publ. 46, ciatedwith Kurokodeposits. Clay !ci.4,305-321. W.E.G. Taylor, 3-8. Sucr, J.F. & CoAD,P.R. (1989): Multiple hydrothermaland -, Reoulr, J.F. & LstrnE,M. (1974):Metamorphosed metamorphicevents in the Kidd Creekvolcanogenic mas- berthierine pellets in Mid-Cretaceousrocks from north- sive sulphidedeposit, Timmins, Ontario: evidence from easremAlgeria. J. sed. Petrol. u, 1275-1280. tourmalinesand chlorites. Can. J. Earth Sci.?6,694-715. VoN DAMM,K.L. & Brscuone,J.L. (1987): Chemistryof (1981):Clay Sunu,F.W. &Henpy, R.G. mineralsin theveins hydrothermalsolutions from the southernJuan de Fuca of the North Pennineorefield, UK. Clay Minerals 16, Ridge.J. Geophys.Res.92, 11,334-11,346. 309-3t2. -, Eovolo, J.M., Gnem, B., MEAsuREs,C.I., Waloeu, SevcHrn,N.F. & REED,M.H. (1989):SOLVEQ: a Computer B. & Wptss,R.F. (1985):Chemistry of submarinehydro- - Program fo r CornputingAqueous M ineral-Gas Equilib ria. thermalsolutions at 2loN, East Pacific Rise. Geochim. Dep.Geological Sci., Univ. Oregon,Eugene, Oregon. Cosmochim.Acta 49. 2197-2220.

SrnxroN,R.L. ( I 983):The direct derivation ofsillimanite from WelrBn, J.R.& Thoupsott,G.R. (1990): Structural variations a kaolinitic precursor:evidence from the Geco mine, in chlorite and illite in a diageneticsequence from the Manitouwadge,Ontario. Econ. G eol. 78, 422437 . ImperialValley, California. Clays Clny Minerals 3E, 315- 321. - (1984): The direct derivationof cordieritefrom a clay-chlorite precursor: evidence from the Geco mine, WALKER,R.R., MAruLtcH, A., AMos,A.C., Werrns, J.J.& Manitouwadge,Ontario. Econ. Geol. 79, 1245-1264. MANNARD,G.W. (1975):The geologyof the Kidd Creek mine.Econ. Geo l. 70, 80-89. STEEFEL,C.I. & VeN CArIELLEN,P. (1990):A new kinetic approachto modelingwater - rock interacfion:the role of WomRy, T.J. ( I 978):Some Chzmical Aspects of Hydrothermal nucleation,precurso$, and Ostwald ripening. Geochim. Processesat Mid-OceanicRidges - A TheoreticalSnly. I. Cos moc h im. Acta 54. 2657-267 7 . Basah - Sea Water Reactlonand Chemical Cycling Be' tweenthe OceanicCrust anl the Oceans.II. Cabulntion of TAyLoR,K.G. (1990):Berthierine from the non-marineWea- Chemical Equilibrium BetweenAqueous Solutions anl lach to modeling - den (Early Cretaceous)sediments of Minerals. Ph.D. thesis,Northwestern Univ., Evanston, south-eastEngland. CIay Minerals 25, 391-399. Illinois. tl42 TI{E CANADIAN MINERALOGIST

Yeu, Yu-Cuvr, Peacon,D.R., BreNs, R.8., EssENs,E.J. & KrN,A.M. (1976):Study of chamositesby gamma-reso- McDow*q S.D. (1988):Microstructures, formation me- nance(Mtissbauer) spectroscopy. 1z Proc. Int. Clay Conf., chanisms,and depth-zoningof phyllosilicatesin geother- MexicoCity, 1975(S.W. Bailey, ed.). Applied Publishing, mally altered shales,Salton Sea California. Clays Clay Wilmette,Illinois (21 l-219). Minerals36. 1-10. ZrnnrNnenc,R.A., SHANKS,W.C., ilI, SEYFRTED,W.E., JR., Kosrr, R.A. & Srmcru-sn,M.D. (1988):Mineralization, EssENE,E.J., Lpr, Jwc Hoo, Kuo, LuNc- alteration,and hydrothermalmetamorphism of the ophio- CsueN& Cosca,M.A. (1987):Hydrothermal treafment of lite-hostedTumer-Albright sulfide deposit,soutlwestem smectite,illite, and basaltto 460oC:comparison of natural Oregon.J. Geophys.Res. 93,46574674. with hydrothermally formed clay minerals. Clays Clay Minerals35.241-250. Received August 7, 1991, revised manuscript accepted YERsHovA,2.P.,Nrrrnre, A.P., PERFIL'EV,Y.D. & BABESH- Februam25.1992.