Nomenclature of the Garnet Supergroup
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Physical Properties of Hydrogrossular Mineral Series
STRUCTURE AND PHYSICAL PROPERTIES OF HYDROGROSSULAR MINERAL SERIES A THESIS IN PHYSICS Presented to the Faculty of the University of Missouri-Kansas City in Partial requirements for the degree MASTER OF SCIENCE By PUJA ADHIKARI M.Sc, Tribhuban University, Kathmandu, Nepal, 2010 Kansas City, Missouri 2015 ©2015 PUJA ADHIKARI ALL RIGHTS RESERVED Structure and physical properties of Hydrogrossular mineral series Puja Adhikari, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2015 ABSTRACT The mineral hydrogrossular series (Ca3Al2(SiO4)3-x(OH) 4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth’s mantle. They are vital to the planet’s hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. -
Coulsonite Fev2o4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia
minerals Article Coulsonite FeV2O4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia Alena A. Kompanchenko Geological Institute of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia; [email protected]; Tel.: +7-921-048-8782 Received: 24 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: This work presents new data on a rare vanadium spinel group mineral, i.e., coulsonite FeV2O4 established in massive sulfide ores of the Bragino occurrence in the Kola region, Russia. Coulsonite in massive sulfide ores of the Bragino occurrence is one of the most common vanadium minerals. Three varieties of coulsonite were established based on its chemical composition, some physical properties, and mineral association: coulsonite-I, coulsonite-II, and coulsonite-III. Coulsonite-I forms octahedral crystal clusters of up to 500 µm, and has a uniformly high content of 2 Cr2O3 (20–30 wt.%), ZnO (up to 4.5 wt.%), and MnO (2.8 wt.%), high microhardness (743 kg/mm ) and coefficient of reflection. Coulsonite-II was found in relics of quartz–albite veins in association with other vanadium minerals. Its features are a thin tabular shape and enrichment in TiO2 of up to 18 wt.%. Coulsonite-III is the most common variety in massive sulfide ores of the Bragino occurrence. Coulsonite-III forms octahedral crystals of up to 150 µm, crystal clusters, and intergrowths with V-bearing ilmenite, W-V-bearing rutile, Sc-V-bearing senaite, etc. Chemical composition of coulsonite-III is characterized by wide variation of the major compounds—Fe, V, Cr. -
New Mineral Names*
American Mineralogist, Volume 84, pages 1464–1468, 1999 NEW MINERAL NAMES* JOHN L. JAMBOR1 AND ANDREW C. ROBERTS2 1Department of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada Barquillite* Chloromenite* A. Murciego, I. Pascua, J. Babkine, Y. Dusausoy, O. Medenbach, L. Vergasova, S. Krivovichev, T. Semenova, S. Filatov, V. Ananiev H.-J. Bernhardt (1999) Barquillite, Cu2(Cd,Fe)GeS4, a new (1999) Chloromenite, Cu9O2(SeO3)4Cl6, a new mineral from mineral from the Barquilla deposit, Salamanca, Spain. Eur. J. the Tolbachik volcano, Kamchatka, Russia. Eur. J. Mineral., Mineral., 11, 111–117. 11, 119-123. The mean of nine listed electron microprobe analyses is Cu The mean of four listed electron microprobe analyses is 30.67, Ag 0.26, Cd 20.38, Fe 2.20, Mn 0.43, Zn 0.09, Ge 14.99, CuO 46.23, ZnO 5.94, SeO2 34.37, Cl 16.57, O ≡ Cl 3.74, sum Sn 0.17, Ga 0.05, Bi 0.16, Sb 0.09, S 29.42, sum 98.91 wt%, 99.36 wt%, corresponding to (Cu7.71Zn0.97)Σ8.68Se4.11O13.80Cl6.20. corresponding to (Cu Ag )Σ (Cd Fe Mn Zn )Σ The mineral occurs as transparent plates, up to 0.2 mm long, 2.10 0.01 2.11 0.79 0.17 0.03 0.01 1.00 – (Ge Sn )Σ S for 8 atoms. The mineral occurs as plates, flattened on {101}, elongate [111] and rarely [010], showing 0.90 0.01 0.91 3.98 – – up to 50 µm across and <20 µm thick, either isolated or in {001}, {101}, {110}, {011} {312} and poorly developed – rosette-like aggregates. -
A Vibrational Spectroscopic Study of the Silicate Mineral Harmotome Â
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015) 70–74 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the silicate mineral harmotome – (Ba,Na,K)1-2(Si,Al)8O16Á6H2O – A natural zeolite ⇑ Ray L. Frost a, , Andrés López a, Lina Wang a,b, Antônio Wilson Romano c, Ricardo Scholz d a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391, Bin Shui West Road, Xi Qing District, Tianjin, PR China c Geology Department, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil d Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil highlights graphical abstract We have studied the mineral harmotome (Ba,Na,K)1- 2(Si,Al)8O16Á6H2O. It is a natural zeolite. Raman and infrared bands are attributed to siloxane stretching and bending vibrations. A sharp infrared band at 3731 cmÀ1 is assigned to the OH stretching vibration of SiOH units. article info abstract Article history: The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16Á6H2O is a crystalline sodium calcium silicate which has Received 31 March 2014 the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with cat- Received in revised form 7 July 2014 alytic potential. Raman bands at 1020 and 1102 cmÀ1 are assigned to the SiO stretching vibrations of Accepted 28 July 2014 three dimensional siloxane units. -
Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Geology Club Mineral: Collecting Trip
Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico. -
Fall 2015 Gems & Gemology
FALL 2015 VOLUME LI THE UARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA Colombian Trapiche Emeralds Large Colorless HPHT-Grown Synthetic Diamonds Diamonds from the Letšeng Mine Fall 2015 VOLUME 51, No. 3 EDITORIAL 221 Trapiche and More... Duncan Pay FEATURE ARTICLES 222 Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation Isabella Pignatelli, Gaston Giuliani, Daniel Ohnenstetter, Giovanna Agrosì, pg. 254 Sandrine Mathieu, Christophe Morlot, and Yannick Branquet Proposes a model for trapiche emerald formation based on petrographic, spectroscopic, and chemical examination. 260 Large Colorless HPHT-Grown Synthetic Gem Diamonds from New Diamond Technology, Russia Ulrika F.S. D’Haenens-Johansson, Andrey Katrusha, Kyaw Soe Moe, Paul Johnson, and Wuyi Wang pg. 270 Examines a new source of colorless and near-colorless gem-quality HPHT synthetic diamonds using spectroscopic and gemological analysis. 280 Letšeng’s Unique Diamond Proposition Russell Shor, Robert Weldon, A.J.A. (Bram) Janse, Christopher M. Breeding, and Steven B. Shirey Explores the history, geology, and current production of this unique source of large diamonds. NOTES AND NEW TECHNIQUES 300 Origin Determination of Dolomite-Related White Nephrite through Iterative-Binary Linear Discriminant Analysis Zemin Luo, Mingxing Yang, and Andy H Shen A technique for origin identification based on statistical analysis and LA-ICP-MS spectrometry. pg. 293 REGULAR FEATURES 312 Lab Notes Unusual graining structure in pink diamond • Yellow HPHT-treated rough diamond -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Carbonation and Decarbonation Reactions: Implications for Planetary Habitability K
American Mineralogist, Volume 104, pages 1369–1380, 2019 Carbonation and decarbonation reactions: Implications for planetary habitability k E.M. STEWART1,*,†, JAY J. AGUE1, JOHN M. FERRY2, CRAIG M. SCHIFFRIES3, REN-BIAO TAO4, TERRY T. ISSON1,5, AND NOAH J. PLANAVSKY1 1Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, U.S.A. 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, U.S.A. 3Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 4School of Earth and Space Sciences, MOE Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University, Beijing 100871, China 5School of Science, University of Waikato, 101-121 Durham Street, Tauranga 3110, New Zealand ABSTRACT The geologic carbon cycle plays a fundamental role in controlling Earth’s climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environ- ment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth’s past and future habitability. Here, we summarize their significance as part of the Deep Carbon Obsevatory’s “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth’s surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth’s history. -
Carbonation and Decarbonation Reactions: Implications for Planetary Habitability K
American Mineralogist, Volume 104, pages 1369–1380, 2019 Carbonation and decarbonation reactions: Implications for planetary habitability k E.M. STEWART1,*,†, JAY J. AGUE1, JOHN M. FERRY2, CRAIG M. SCHIFFRIES3, REN-BIAO TAO4, TERRY T. ISSON1,5, AND NOAH J. PLANAVSKY1 1Department of Geology & Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, U.S.A. 2Department of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, U.S.A. 3Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 4School of Earth and Space Sciences, MOE Key Laboratory of Orogenic Belt and Crustal Evolution, Peking University, Beijing 100871, China 5School of Science, University of Waikato, 101-121 Durham Street, Tauranga 3110, New Zealand ABSTRACT The geologic carbon cycle plays a fundamental role in controlling Earth’s climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environ- ment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth’s past and future habitability. Here, we summarize their signifcance as part of the Deep Carbon Obsevatory’s “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth’s surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth’s history. -
Fluorian Garnets from the Host Rocks of the Skaergaard Intrusion: Implications for Metamorphic Fluid Composition
American Mineralogist, Volume 75, pages 859-873,1990 Fluorian garnets from the host rocks of the Skaergaard intrusion: Implications for metamorphic fluid composition CRAIG E. MANNING, * DENNIS K. BIRD Department of Geology, Stanford University, Stanford, California 94305, U.S.A. ABSTRACT Zoned, silica-deficient, calcic garnets containing up to 5 mol% F substitution for 0 formed during contact metamorphism of basalts by the Skaergaard intrusion in East Greenland. Fluorian calcic garnets occur as a retrograde alteration of prograde wollastonite and clinopyroxene that fills vesicles and vugs in lavas 30-70 m from the intrusion. Para- genetically equivalent phases include fluorite, wollastonite, calcic clinopyroxene, prehnite, quartz, and calcite. Electron microprobe analysis shows that the garnets are :::-:93mol% grossular-andradite (grandite) solid solutions and that the F content does not fully com- pensate for the silica deficiency, suggesting the presence of a hydrous component in the garnets. The garnets display discontinuous zoning with respect to Al and Fe, and increases in F, calculated OH, and the Si deficiency with increasing Al concentration are observed. The garnets formed at temperatures between 200 and 420°C based on the coexisting mineral assemblage, and stratigraphic reconstructions indicate pressures of ~ 1 kbar. Assessment of isobaric, isothermal phase relations in the system CaO-A1203-Si02-H20- HF allows estimation of fluid characteristics in equilibrium with fluorian grandite-bearing assemblages. The presence of fluorite, wollastonite, quartz, and calcite with these garnets combined with fluid inclusion data require that the activity (a) of H20 was ~ 1 and that aH.aF was 10-105 to 10-10.0in the coexisting hydrothermal solutions at 200-420 °C and 1 kbar.