The Journal of Gemmology Editor: Dr R.R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
48Th California International Antiquarian Book Fair, February 6Th-8Th
We are specialized in science, philosophy, economics, natural history, and history of ideas in general, in the period from the 15th to the 20th century. Below are short-title descriptions of the books that we are showing at the 48th California International Antiquarian Book Fair, 2015. Full descriptions of all of our books are available. Please visit us in BOOTH 804. For a full view of our entire stock, please visit our web-site, www.lynge.com, where you will be able to search and browse more than 20,000 books. _____________________________________________ 48th California International Antiquarian Book Fair, February 6th-8th Short-title List -Full descriptions of all items are available upon request Science & Logic pp. 1-6 Philosophy & Philology pp. 7-12 Economics & 20th Cent. Politics pp. 12-15 Biology & Mineralogy pp. 15-18 Medicine pp. 19-20 Travels pp. 20-23 Art & Literature pp. 23-25 Varia pp. 25-26 -Including Medieval manuscripts 1 Science & Logic THE FIRST PRINCIPLES OF THOUGHT ALEXANDER OF APHRODISIAS. In topica Aristotelis commentarii [Graece]. [Aldus, 1513]. The scarce editio princeps of Alexander of Aphrodisias' extremely influential commentary of Aristotle's "Topics", which is responsible for our understanding and utilization of this most fundamental text for the thought of mankind. Aristotle's "Topics" occupies an absolutely central place in the development of science and philosophy since Antiquity. It is this work that sets the boundaries for what we can meaningfully talk about, and even how to talk about it. Through the "topics" mankind will be able to state the true premises that form the foundation upon which we build science and philosophy. -
Structure and Physical Properties of Hydrogrossular Mineral Series
STRUCTURE AND PHYSICAL PROPERTIES OF HYDROGROSSULAR MINERAL SERIES A THESIS IN PHYSICS Presented to the Faculty of the University of Missouri-Kansas City in Partial requirements for the degree MASTER OF SCIENCE By PUJA ADHIKARI M.Sc, Tribhuban University, Kathmandu, Nepal, 2010 Kansas City, Missouri 2015 ©2015 PUJA ADHIKARI ALL RIGHTS RESERVED Structure and physical properties of Hydrogrossular mineral series Puja Adhikari, Candidate for the Master of Science Degree University of Missouri-Kansas City, 2015 ABSTRACT The mineral hydrogrossular series (Ca3Al2(SiO4)3-x(OH) 4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth’s mantle. They are vital to the planet’s hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. -
An Evolutionary System of Mineralogy: Proposal for a Classification Of
1 1 02 November 2018—American Mineralogist—Revision 1 2 3 4 An evolutionary system of mineralogy: Proposal for a classification 5 of planetary materials based on natural kind clustering 6 7 ROBERT M. HAZEN1,* 8 1Geophysical Laboratory, Carnegie Institution for Science, 9 5251 Broad Branch Road NW, Washington, DC 20015, U. S. A. 10 11 ABSTRACT 12 Minerals reveal the nature of the co-evolving geosphere and biosphere through billions of years 13 of Earth history. Mineral classification systems have the potential to elucidate this rich 14 evolutionary story; however, the present mineral taxonomy, based as it is on idealized major 15 element chemistry and crystal structure, lacks a temporal aspect and thus cannot reflect planetary 16 evolution. A complementary evolutionary system of mineralogy based on the quantitative 17 recognition of “natural kind clustering” for a wide range of condensed planetary materials with 18 different paragenetic origins has the potential to amplify, though not supersede, the present 19 classification system. 20 21 _________________________________ 22 *E-mail: [email protected] 23 Keywords: philosophy of mineralogy; classification; mineral evolution; mineral ecology; data- 24 driven discovery; cluster analysis; natural kinds 2 25 INTRODUCTION 26 For more than 2000 years, the classification of natural objects and phenomena into “kinds” has 27 been a central pursuit of natural philosophers (Aristotle/Thompson 1910; Locke 1690; Linnaeus 28 1758). The modern mineral classification system, rooted in the chemical framework of James 29 Dwight Dana (1850), is based on unique combinations of idealized major element composition 30 and crystal structure (Strunz 1941; Palache et al. 1944, 1951; Liebau 1985; Mills et al. -
Infrared and Raman Spectroscopic Characterization of the Silicateв
Journal of Molecular Structure 1042 (2013) 1–7 Contents lists available at SciVerse ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc Infrared and Raman spectroscopic characterization of the silicate–carbonate mineral carletonite – KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Andrés López a, Fernanda Maria Belotti c a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35903-087, Brazil article info abstract Article history: An assessment of the molecular structure of carletonite a rare phyllosilicate mineral with general chem- Received 28 February 2013 ical formula given as KNa4Ca4Si8O18(CO3)4(OH,F)ÁH2O has been undertaken using vibrational spectros- Received in revised form 19 March 2013 copy. Carletonite has a complex layered structure. Within one period of c, it contains a silicate layer of Accepted 19 March 2013 composition NaKSi O ÁH O, a carbonate layer of composition NaCO Á0.5H O and two carbonate layers Available online 26 March 2013 8 18 2 3 2 of composition NaCa2CO3(F,OH)0.5. À1 2À Raman bands are observed at 1066, 1075 and 1086 cm . Whether these bands are due to the CO m1 Keywords: 3 symmetric stretching mode or to an SiO stretching vibration is open to question. Carletonite Multiple bands are observed in the 300–800 cmÀ1 spectral region, making the attribution of these Carbonate Infrared bands difficult. -
The Red Emerald
The Red Emerald Black Album Words by Seth William Rozendaal Photos by David Rozendaal This work is for the enjoyment of gemstone aficionados around the world and throughout time, and dedicated to the divine muse who inspires everything. This book celebrates the Red Emerald’s public debut at the 2017 Tucson Gem and Mineral Show. Graphics taken from the Mineralogical Record Volume 47 Number 1: Colombian Emeralds where noted. The two photos of the Heart matrix specimen on the top of the page in Section VI were taken by Wayne Schrimp. Seth Rozendaal is responsible for the landscape photo in Section II, the beveled heart in Section VI and Office Suite Graphics. The Suite Treasure necklace photo in Section XIII was taken at the Brent Isenberger Studio. Cover and all other interior photos in this album were taken by David Rozendaal. Without his tireless dedication, this publication would not have been possible. For additional information, please contact: Seth William Rozendaal (515) 868-7207 [email protected] Index I - Red Beryl IS Red Emerald II - Formation III - Matrix Specimens IV - Wafers V - Prisms VI - Twins VII - Clusters VIII - Bixbyite Combinations IX - Topaz Combinations X - Hourglass Patterning XI - The Scarlet Spectrum XII - Facet-Grade Red Emerald XIII - The Red Emerald Suite Treasure I ~ Red Beryl IS Red Emerald The human infatuation with Emeralds runs so deep, and our desire for them traces so far back… It's one of the only gemstones found in rank-signifying Neolithic headdresses. Yeah, you heard me: Caveman Crowns. Aja Raden - Author, Historian and Scientist Diamonds may be forever, but only Emeralds are eternal; our appreciation of Emeralds stretches from the beginning of human civilization to the very end. -
Intergrown Emerald Specimen from Chivor Tity Was Confirmed by Raman Spectroscopy
Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula Intergrown Emerald Specimen from Chivor tity was confirmed by Raman spectroscopy. The inclusion exhibited a well-formed hexagonal prismatic shape with Colombia’s Chivor emerald mines are located in the east- pyramid-like termination (figure 2). Although intergrowth ern zone of the Eastern Cordillera range of the Andes emerald crystals have been described and documented in Mountains. Chivor translates to “green and rich land” in the literature several times (G. Grundmann and G. Giu- Chibcha, the language of the indigenous people who were liani, “Emeralds of the world,” in G. Giuliani et al., Eds., already mining emerald more than 500 years ago, before Emeralds of the World, extraLapis English, No. 2, 2002, pp. the arrival of the Spanish conquistadors (D. Fortaleché et al., “The Colombian emerald industry: Winds of change,” Fall 2017 G&G, pp. 332–358). Chivor emeralds exhibit a bright green color with a tint of blue; they have relatively Figure 1. An emerald crystal inclusion measuring high clarity and fewer inclusions than emeralds found in ~2.67 × 2.71 × 5.43 mm is found inside this large Colombia’s western belt. emerald specimen (18.35 × 10.69 × 9.79 mm) from Colombia’s Chivor mine. Photo by John Jairo Zamora. The authors recently examined a rough emerald crystal specimen (figure 1), measuring 18.35 × 10.69 × 9.79 mm, reportedly from Chivor. This crystal weighed 3.22 g (16.10 ct) and had a prismatic hexagonal crystal shape. Standard gemological examination confirmed the gemstone to be emerald, and ultraviolet/visible/near-infrared (UV-Vis-NIR) spectroscopy showed a classic Colombian emerald absorp- tion spectrum. -
Geology Club Mineral: Collecting Trip
Geology Club: Mineral Collecting Trip (10 October 2009) Trip Notes by Charles Merguerian STOP 1 – Grossular Garnet Locality, West Redding, Connecticut. [UTM Coordinates: 630.71E / 4575.38N, Bethel quadrangle]. Covering roughly 60 acres of land, this enigmatic massive fine-grained grossularite garnet + diopside rock in West Redding has made many mineral collectors and geologists take notice. Walk up the steep slope east of Simpaug Turnpike to see highly fractured, massive cinnamon-colored grossular garnet rock, part of a 0.6-km wide heart-shaped mass found at the faulted contact between the Stockbridge Marble (OCs) and injected muscovitic schist of the Rowe Schist member (OCr) of the Hartland Formation (Figure 1). According to Rodgers et al. (1985), we are very near Cameron’s Line (red and black line in Figure 1). Figure 1 – Geologic map of the area surrounding Stop 1 showing the Proterozoic gneissic rocks (Yg) and Cambrian Dalton Schist (Cd) to the west, the Stockbridge Marble (OCs), Cameron’s Line (CL in red), the injected schistose rocks of the Rowe Formation (OCr), and an Ordovician granitoid (Og) that may be responsible for this unusual Ca++-enriched skarn deposit. Note the NW-trending high-angle brittle faults that cut the region. (Adapted from Rodgers et al. 1985.) Two knolls at this locality are almost entirely composed of grossularite garnet (var. essonite) and lesser clinopyroxene. Mostly the garnet occurs alone with minor quartz and localized quartz veining has been observed. Chemical analysis of the garnet (SiO2 = 39.10%, CaO = 34.85%, Al2O3 = 19.61%, and total FeO+Fe2O3 = 5.44%), are quite similar to published analyses of grossular garnet, including the phenomenal grossular garnet crystals from Morelos, Mexico. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Garnet, Industrial 2016
2016 Minerals Yearbook GARNET, INDUSTRIAL [ADVANCE RELEASE] U.S. Department of the Interior September 2018 U.S. Geological Survey Garnet, Industrial By Robert M. Callaghan and Kenneth C. Curry Domestic survey data and table were prepared by Chanda C. Williams, statistical assistant. In 2016, U.S. production of crude garnet concentrate for combination with one or two other minerals, have reserves that industrial use was estimated to be 56,400 metric tons (t) valued can be mined at a low cost, and have the ability to react rapidly at about $12.8 million, a slight increase in tonnage and virtually to changes in market demand. The value of industrial garnet is unchanged in value from 55,200 t valued at $12.7 million in 2015. influenced by the size and grade of reserves, the type and quality U.S. production of refined garnet in 2016 was estimated to be of garnet mined, the proximity of deposits to infrastructure and 49,400 t valued at $24.4 million, a slight increase in tonnage and consumers, and the milling costs. The majority of industrial- a slight decrease in value from 48,700 t valued at $24.8 million grade garnet mined in the United States consists of almandine in 2015. U.S. exports of industrial garnet were 13,400 t, a 9% (iron-aluminum silicate) and pyrope (magnesium-aluminum decrease compared with those in 2015. Imports of garnet were silicate), although some andradite (calcium-iron silicate) also is estimated to be 150,000 t in 2016, a 38% decrease compared with mined domestically. -
What Literature Knows: Forays Into Literary Knowledge Production
Contributions to English 2 Contributions to English and American Literary Studies 2 and American Literary Studies 2 Antje Kley / Kai Merten (eds.) Antje Kley / Kai Merten (eds.) Kai Merten (eds.) Merten Kai / What Literature Knows This volume sheds light on the nexus between knowledge and literature. Arranged What Literature Knows historically, contributions address both popular and canonical English and Antje Kley US-American writing from the early modern period to the present. They focus on how historically specific texts engage with epistemological questions in relation to Forays into Literary Knowledge Production material and social forms as well as representation. The authors discuss literature as a culturally embedded form of knowledge production in its own right, which deploys narrative and poetic means of exploration to establish an independent and sometimes dissident archive. The worlds that imaginary texts project are shown to open up alternative perspectives to be reckoned with in the academic articulation and public discussion of issues in economics and the sciences, identity formation and wellbeing, legal rationale and political decision-making. What Literature Knows The Editors Antje Kley is professor of American Literary Studies at FAU Erlangen-Nürnberg, Germany. Her research interests focus on aesthetic forms and cultural functions of narrative, both autobiographical and fictional, in changing media environments between the eighteenth century and the present. Kai Merten is professor of British Literature at the University of Erfurt, Germany. His research focuses on contemporary poetry in English, Romantic culture in Britain as well as on questions of mediality in British literature and Postcolonial Studies. He is also the founder of the Erfurt Network on New Materialism. -
October 2003 SOCIETY
ISSN 0739-4934 NEWSLETTER HISTORY OF SCIENCE VOLUME 32 NUMBER 4 October 2003 SOCIETY those with no interest in botany, the simple beauty of the glass is enough. Natural History Delights in Cambridge From modern-life in glass to long-ago life, it’s only a short walk. The museum houses ant to discuss dinosaurs, explore microfossils of some of the Earth’s earliest life Wancient civilizations, learn wild- forms, as well as fossil fish and dinosaurs – flower gardening, or study endangered such as the second ever described Triceratops, species? If variety is the spice of life, then and the world’s only mounted Kronosaurus, a the twenty-one million specimens at the 42-foot-long prehistoric marine reptile. Harvard Museum of Natural History show a Among its 90,000 zoological specimens the museum bursting with life, much of it unnat- museum also has the pheasants once owned urally natural. by George Washington. And many of the The museum will be the site of the opening mammal collections were put together in the reception for the 2003 HSS annual meeting. 19th century by “lions” in the history of sci- The reception begins at 7 p.m. Thursday, 20 ence, like Louis Agassiz. November, and tickets will be available at the Much of the museum’s collection of rocks and meeting registration desk. Buses will run from ores is the result of field work, but the museum the host hotel to the museum. houses not only that which has been dug up, but The Harvard MNH is an ideal spot for his- also that which has fallen out of the sky. -
Simultaneous Diamond, White Sapphire & Moissanite
SIMULTANEOUS DIAMOND, WHITE SAPPHIRE & MOISSANITE TESTER NEW ADVANCED EXCLUSIVE TECHNOLOGY RECOMMENDED by CHARLES & COLVARD CREATED MOISSANITE READ BEFORE USING The new moissanite that was introduced in late 2015 has changed. It can no longer be easily visually identified. It is now D-E-F “colorless”, with few inclusions. More importantly, standard diamond/moissanite testers will identify it as diamond since it is now only very slightly electrically conductive. The UltraTester 3+ uses new technology and is calibrated to identify this faint property. Be aware that body oil is also electrically conductive. Due to the tester’s enhanced sensitivity, dirty diamonds may test as moissanite. To avoid false/positive readings on dirty diamonds, ALWAYS CLEAN THE STONE on a cloth prior to testing. Periodically, also clean any accumulated body oil off of the probe tip by gently rubbing it on uncoated paper - SEE MANUAL. NEED HELP? Call GemOro at 800.527.0719 for immediate assistance. The GemOro UltraTester 3+ is the ultimate tester for diamond fraud protection that’s exclusively RECOMMENDED BY CHARLES & COLVARD, the manufacturer of created moissanite! The UltraTester 3+ features NEW ADVANCED EXCLUSIVE TECHNOLOGY capable of identifying the widest range of the electrically conductive moissanite material available, including the new super-low electrically conductive moissanite. OPERATING PROCEDURE & OWNERS MANUAL Congratulations on your purchase of the UltraTester 3+ from GemOro Superior GEMORO ULTRATESTER 3+ 2 Instruments, the most trusted name in gemological instrumentation for the jewelry industry. You’ve made a great choice. Built upon the foundation of the second generation and most popular tester to date, the UltraTester 3+ offers even more.