A Single-Crystal Epr Study of Radiation-Induced Defects

Total Page:16

File Type:pdf, Size:1020Kb

A Single-Crystal Epr Study of Radiation-Induced Defects A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal. The NH 2 free radical, which is one of the most studied triatomic molecules and is widely used as spin labels in biophysical and biomedical research, in fluorapophyllite has been observed and characterized by single-crystal EPR spectra. Fourier-transform infrared (FTIR) spectrum supports electron-microprobe analyses that fluorapophyllite on the cavity walls in a phonolite (North Bohemia, Czech + Republic) contains ammonium NH 4 . The spin-Hamiltonian parameters of the NH 2 free radical show that this molecule is oriented parallel to (and rapidly rotated about) the crystallographic c axis. The NH 2 free radical in fluorapophyllite, most likely + formed from radiolysis of the NH 4 ion, remains stable after annealing at 300°C, but is bleached at 340°C. This is the first report of the NH 2 free radical in a mineral lattice. An O - center and its biradicals in hydroxylapophyllite have been investigated by use of single-crystal and powder EPR spectroscopy at 290 and 90 K and three-pulse electron spin echo envelope modulation (ESEEM) spectroscopy at 25 K. The spin-Hamiltonian parameters show that the O - center (σ-type) represents an unpaired electron in the 2 pz orbital of the hydroxyl oxygen atom. A series of weak ii satellite peaks accompanying the main lines have been attributed to four geometrically distinct pairs of neighboring O - centers ( i.e ., biradicals). These biradicals have a point-dipole character and further support the O - model and its location. The O - center in hydroxylapophyllite is most likely produced by natural radiation and can be enhanced by gamma-ray irradiation. It is bleached at 300°C but can be restored readily by gamma-ray irradiation. An Al-O- center in gamma-ray-irradiated prehnite has been investigated by single-crystal EPR spectroscopy at 298 and 160 K. The spin-Hamiltonian parameters g and A(27 Al) at 298 K show that the hole traps on an apical hydroxyl oxygen of the octahedral O4Al(OH) 2 group, after removal of the proton. Pulsed electron nuclear double resonance (ENDOR) spectra measured at 25 K further confirm the structural model of the Al-O- center. Isothermal and isochronal annealing experiments show that the Al-O- center exhibits second-order decay kinetics. The Al-O- center is bleached after annealing at 375°C but can be restored by gamma-ray irradiation. These results from the Al-O- center in prehnite provide support for and new insights into Clozel et al . (1995)’s VI Al −O−−VI Al model for the B center in kaolinite. 4- 2- Two arsenic-centered oxyradicals ([AsO 4] and [AsO 4] ) in gamma-ray irradiated hemimorphite (Mapimi, Durago, Mexico) have been observed and characterized by single-crystal EPR at ~295 K. The spin-Hamiltonian parameters 4- suggest that the [AsO 4] radical is produced from electron trapping by a locally 3- 4- uncompensated [AsO 4] group substituting for the [SiO 4] group. The 2- 29 1 spin-Hamiltonian parameters of the [AsO 4] radical, including its Si and H iii superhyperfine coupling constants, suggest hole trapping on the bridging oxygen linked to a Si 4+ ion. Hydrothermal experiments at 200 °C and ~9.5 MPa show that hemimorphite is able to accommodate up to 2.5 wt% As 2O5. These results demonstrate that hemimorphite is capable of sequestering arsenate in its crystal lattice, so it is a natural sink for attenuating As in supergene non-sulfide Zn deposits and Zn mine tailings. Hemimorphite commonly contains elevated contents of heavy metalloids such as As, Cu, Cd, and Pb. Cation-exchange experiments of hemimorphite with 0.1M CaCl 2 solution at 110°C show that As and Cu are retained, whereas Cd and Pb are readily exchanged. This exchange behavior of Cd and Pb suggests that they may reside in the channel. Single-crystal EPR results at 295 and 120 K show that Cu 2+ resides at the tetrahedral Zn site, not in the channel as previously suggested by the powder EPR study of Gallegos et al . (2009). These results suggest that hemimorphite is potentially useful for the remediation of heavy metalloid contamination. Single-crystal EPR spectra of gamma-ray-irradiated hemimorphite after storage at room temperature for three months reveal a hydroperoxy radical HO 2 with complex proton hyperfine and superhyperfine structures. The single-crystal EPR spectra of this HO 2 radical, measured from 4 K to 275 K, confirm two reversible phase transitions at ~98 K and ~21 K. Spin-Hamiltonian parameters show that the HO 2 radical at 110 K forms from the H 2O molecule in the channel and interacts with two equivalent protons of the nearest hydroxyl groups. The HO 2 radical changes in site symmetry from monoclinic to triclinic across the ~98 K phase transitions and iv confirms dynamic ordering and rotation of its precursor water molecule in the channel at <98 K. The EPR spectra of the HO 2 radical at <21 K and results from density functional theory (DFT) calculations suggest that hemimorphite adopts the monoclinic space group Im with completely ordered O−H systems at low temperature. v Acknowledgements I would have never completed this research without my supervisor Dr. Yuanming Pan. He has taught me the way to do research and pushed me to work hard. I am grateful to him for the time and patience that he has generously spent on my research in these years. I also thank the members of my advisory committee: Dr. Kevin Ansdell, Dr. Jim Merriam, Dr. Ingrid Pickering, Dr. Robin W. Renaut, and Dr. Robert Scott, as well as my external examiner Dr. Mostafa Fayek, for incisive criticisms and helpful suggestions. Special thanks to Dr. Mark J. Nilges for the collaborative work with ESEEM and ENDOR experiments at Illinois EPR Research Center, and Dr. Ramaswami Sammynaiken of Saskatchewan Structural Science Centre for his assistance on the X-band EPR experiments. I am very grateful to Mr. T. Bonli, Dr. J. Fan, Dr. Z. Li, and Mr. B. Novakovski of the Department of Geological Science for their assistance with electron microprobe analysis, inductively-coupled plasma mass spectroscopy analysis, DFT calculations, and sample preparation, respectively. I also want to express my gratitude to my family for their support and encouragements. They have been always proud of my achievement and encouraged me when I faced problems on research. At last, I gratefully thank Natural Science and Engineering Research Council of Canada, Areva Resources Canada Scholarship, and University of Saskatchewan Graduate Teaching Fellowship for financial support to my research. vi TABLE OF CONTENTS PERMISSION TO USE ................................................................................................. i ABSTRACT.................................................................................................................. ii ACKNOWLEDGEMENTS ......................................................................................... vi TABLE OF CONTENTS............................................................................................ vii LIST OF TABLES ...................................................................................................... xii LIST OF FIGURES.................................................................................................... xiv 1.INTRODUCTION AND OBJECTIVES ..................................................................1 1.1 STUDY OVERVIEW ................................................................................................................... 1 1.1.1 Defects.......................................................................................................... 1 1.1.2 The selected silicates...................................................................................
Recommended publications
  • C:\Documents and Settings\Alan Smithee\My Documents\Japan-Law Twin Quartz.Wpd
    Rdosdladq1//3Lhmdq`knesgdLnmsg9I`o`m,K`vSvhmmdcPt`qsy “Of the various twin laws exhibited by quartz, few are more desirable or interesting to the collector than the Japan law. Such specimens are generally attractive, normally available from only a few locations worldwide, and often expensive.” --Robert B. Cook, Mineralogical Record, May-June 1979. OGXRHB@K OQNODQSHDR Chemistry: SiO2 Silicon Dioxide Class: Silicates Subclass: Tectosilicates Group: Quartz Crystal System: Hexagonal (Trigonal) Crystal Habits: Usually long, prismatic crystals, striated crosswise and frequently terminated by double rhombohedrons shaped like hexagonal pyramids; less frequently, short prisms to nearly bipyramidal; sometimes distorted, skeletal, and drusy; also granular, disseminated, and massive (microcrystalline). Twinning relatively common. Color: Colorless, white, and many shades, often with varietal names such as rose quartz, pink to rose-red; amethyst, purple; rock crystal, transparent and colorless; smoky quartz, pale brown to near-black; milky quartz, milk-white; citrine, yellow. Twinned crystals are usually colorless; may be smoky or amethyst in rare instances. Luster: Vitreous to slightly greasy Transparency: Transparent to translucent Streak: White Refractive Index: 1.55 Cleavage: Generally none; occasionally exhibits indistinct rhombohedral parting Fracture: Conchoidal to subconchoidal Hardness: Mohs 7.0 Figure 1 Japan-Law Specific Gravity: 2.65 twinned quartz Luminescence: Triboluminescent (luminescence caused by friction) Distinctive Features and Tests: Best field marks are vitreous to greasy luster, crosswise-striated hexagonal crystals, and hardness. Dana Classification Number: 75.1.3.1 M @L D The English word “quartz” derives from the German Quarz, which in turn may have originated from the archaic Slavic word kwardy, meaning “hard.” It is correctly pronounced KWÔRTZ.
    [Show full text]
  • THB Avterican Mtxeralocist
    THB AvtERICAN MtxERALocIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol. 49 JUL\'-AUGUST, 1964 Nos. 7 and 8 BUDDINGTONITE, AN AMMONIUM FELDSPAR WITH ZEOLITIC WATER1 Rrcn,lno C. Ent, DoNaro E. Wnrro, Josorn J. Faunv eNo Dower-o E. Lno, U. S. Geol,ogicolSurttey, Menlo Park, Calif ., and' Wash'ington,D' C. Arsrn,q.ct Buddingtonite, the first ammonium aluminosilicate found in nature, occurs in Quater- nary andesite and older rocks hydrothermally altered by ammonia-bearing hot-spring waters below the water table at the Sulphur Bank quicksilver mine, Lake county, cali- fornia. Typicaliy, it occurs as compact masses pseudomorphous after plagioclase, and as crystals as much as 0.05 mm diameter lining cavities. Buddingtonite is biaxial (*), a:1.530,0:1'531, r:1.534 all *0'002,2V not de- terrnined,X/1a:4',2:b,Y Ac:19'. H 5+, G2.32+0.01- Chemical analysis of purest separate gave: SiOz,63.80;A1:Or, 19.16; FezOe, 1'85; MgO' 0.21; CaO,0.04; BaO, 0.26; NarO, 0.06; KzO, 0.62; (NHr)rO, 7.95;TiO2,0.99; HzO-, 0'88; HzO+,3.28; S, 1.59;total 100.69(-O+S):100.10 per cent. Buddingtonite is monoclinic; P21or P21fm;a:8.571,b:13.032,c:7.187,A:ll2o44' !l'; a:b:c:0.658:1:0.551; cell volume, 7+0.42fu;ceil contents4[NHdISirOs'1/2HzO]; calculated density, 2.38s gcm-3. From 370" to 430. c, buddingtonite is the ammonium analogue of monoclinic K-feld- spar; below about 370' C with normal atmospheric moisture, buddingtonite adsorbs zeo- Iitic water.
    [Show full text]
  • Nho* in Pegmatitic Feldspars from the Southern Black Hills, South Dakota
    American Mineralogist, Volume 73, pages 818-82I , 1988 NHo* in pegmatitic feldspars from the southern Black Hills, South Dakota G. Cr,nvn SolovroNrr Gnoncn R. RossNr.q.N Division of Geological and Planetary Sciences,2California Institute of Technology, Pasadena,California 91125, U.S.A. Ansrru,cr Trace amounts of ammonium ion (0.7 molo/oNHo* substitution) have been identified from the infrared spectra of alkali feldspars from pegmatites occurring in the southern Black Hills district, South Dakota. The spectroscopicdata indicate that the ammonium is structurally bound, most likely in the M site of the microcline. These results indicate that ammonium was likely a component of metamorphic fluids present during anatexis of metasedimentaryrocks in the southern Black Hills district. INrnonucrroN cent materialintimately mixed with sinuouspatches of turbid materialin a typicalperthitic intergrowth. In the clearregions, Buddingtonite, the feldspar in which NHf, substitutes no inclusions-fluid or solid-were observedmicroscopically. for K+ in the M site, was first discovered in a low-tem- The slabs,mounted over brassapertures that rangedfrom 2.0 perature, ammonium-rich environment (Erd et al., 19 6 4). to 0.5 mm, werepositioned so that the beamavoided strongly Both buddingtonite and K-feldspars with variable am- turbid zones.The slabsranged in thicknessfrom 0.20 to 0.80 monium contents have subsequentlybeen found in a va- mm for measurementsin the 4000- to 2500-cm-' regionand riety of localities where rocks have been hydrothermally weregreater than
    [Show full text]
  • A Guide to the Crystallographic Analysis of Icosahedral Viruses
    UC Irvine UC Irvine Previously Published Works Title A guide to the crystallographic analysis of icosahedral viruses Permalink https://escholarship.org/uc/item/64w5j3pz Journal Crystallography Reviews, 21(1-2) ISSN 0889-311X Authors McPherson, A Larson, SB Publication Date 2015 DOI 10.1080/0889311X.2014.963572 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Crystallography Reviews, 2015 Vol. 21, Nos. 1–2, 3–56, http://dx.doi.org/10.1080/0889311X.2014.963572 REVIEW A guide to the crystallographic analysis of icosahedral viruses Alexander McPherson∗ and Steven B. Larson Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA (Received 13 August 2014; accepted 5 September 2014) Determining the structure of an icosahedral virus crystal by X-ray diffraction follows very much the same course as conventional protein crystallography. The major differences arise from the relatively large sizes of the particles, which significantly affect the data collection process, data processing and management, and later, the refinement of a model. Most of the other differences are due to the high 532point group symmetry of icosahedral viruses. This alters dramatically the means by which initial phases are obtained by molecular substitu- tion, extended to higher resolution by electron density averaging and density modification, and the refinement of the structure in the light of high non-crystallographic symmetry. In this review, we attempt to lead the investigator through the various steps involved in solving the structure of a virus crystal. These steps include the purification of viruses, their crystal- lization, the recording of X-ray diffraction data, and its reduction to structure amplitudes.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Italian Type Minerals / Marco E
    THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests.
    [Show full text]
  • What We Know About Subduction Zones from the Metamorphic Rock Record
    What we know about subduction zones from the metamorphic rock record Sarah Penniston-Dorland University of Maryland Subduction zones are complex We can learn a lot about processes occurring within active subduction zones by analysis of metamorphic rocks exhumed from ancient subduction zones Accreonary prism • Rocks are exhumed from a wide range of different parts of subduction zones. • Exhumed rocks from fossil subduction zones tell us about materials, conditions and processes within subduction zones • They provide complementary information to observations from active subduction systems Tatsumi, 2005 The subduction interface is more complex than we usually draw Mélange (Bebout, and Penniston-Dorland, 2015) Information from exhumed metamorphic rocks 1. Thermal structure The minerals in exhumed rocks of the subducted slab provide information about the thermal structure of subduction zones. 2. Fluids Metamorphism generates fluids. Fossil subduction zones preserve records of fluid-related processes. 3. Rheology and deformation Rocks from fossil subduction zones record deformation histories and provide information about the nature of the interface and the physical properties of rocks at the interface. 4. Geochemical cycling Metamorphism of the subducting slab plays a key role in the cycling of various elements through subduction zones. Thermal structure Equilibrium Thermodynamics provides the basis for estimating P-T conditions using mineral assemblages and compositions Systems act to minimize Gibbs Free Energy (chemical potential energy) Metamorphic facies and tectonic environment SubduconSubducon zone metamorphism zone metamorphism Regional metamorphism during collision Mid-ocean ridge metamorphism Contact metamorphism around plutons Determining P-T conditions from metamorphic rocks Assumption of chemical equilibrium Classic thermobarometry Based on equilibrium reactions for minerals in rocks, uses the compositions of those minerals and their thermodynamic properties e.g.
    [Show full text]
  • Structural Characterization of the Type II Secretion System of Aeromonas Hydrophila
    Structural characterization of the type II secretion system of Aeromonas hydrophila A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Leisure Activity University of Saskatchewan Saskatoon By BENJAMIN FLATH Copyright Benjamin Flath, April, 2012. All rights reserved PERMISSION TO USE In presenting this thesis as partial fulfillment of the requirements for a Postgraduate Degree at the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I also agree that permission for copying this thesis in any manner for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts of this thesis for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Pharmacy and Nutrition College of Pharmacy and Nutrition University of Saskatchewan 110 Science Place Saskatoon, Saskatchewan Canada, S7N 5A8 i ABSTRACT The exeC gene, found in the gram-negative bacteria Aeromonas hydrophila codes for a 31 kDa, three domain, bitopic inner membrane protein.
    [Show full text]
  • The Rarer Metals
    THE RARER METALS. By FRANK L. HESS. INTRODUCTION. Great gold placer fields, now mere wastes of overturned gravels; worked-out coal fields; exhausted gold, silver, and other mines, with their sterile dumps, gaunt head frames, and decaying shaft houses and mills, testify that, unlike manufactures and agricultural prod­ ucts, mineral deposits are diminishing assets, and the fact that a large production of some mineral has been made in one year does not necessarily imply that it can be repeated under the impetus of great need. In estimating the possible production of any mineral for any period, a proper weighing of the attending circumstances, the statistics of production of preceding years, and a knowledge of the deposits themselves are all necessary, and these statements probably apply more forcibly to the metals used in alloy steels than to others, for these metals occur in vastly less quantities than coal, iron, copper, or the other common metals, and the individual deposits are smaller' and much less widely distributed and, unlike those of copper or iron, are in very few places concentrated from lean into richer deposits. Comparatively restricted markets and lack of knowledge concern­ ing these metals themselves and of the minerals in which they occur have prevented prospecting for them until within the last few years, so that as a rule developments of such deposits are small. The subjects briefly discussed here with reference to their avail­ ability as war supplies are treated more fully in Mineral Resources and other publications of the.United States Geological Survey, espe­ cially those for recent years.
    [Show full text]
  • On the Elimination of Plagioclase Twinning
    ON THE ELIMINATION OF PLAGIOCLASE TWINNING BY E. A. V. PRASAD (Department of Geology, Sri Venkateswara University, Tirupati, d.P.) Reeeivetl April 27, 1966 (Communicated by Prof. C. S. Piehamuthu, F.A.se.) ABSTRACT A study of the cataclasticaUy deformed plagioclase from a fault zone reveals that the characteristic plagioclase twinning is destroyed in some way. It is presumed that twinning in plagioclase is an .irreversible or thermodynamically unstable imperfection. It is concluded that cataclasis and the consequent induced twinning are pre-'tectonie crystal- lisation features, while elimination of twinning is a post-tectonic deforma- tional feature. INTRODUCTION DURING the petrographic study of the rocks occurring in a fault zone near Ramapuram, Anantapur District of Andhra Pradesh, it was noticed that the fundamental and characteristic plagioclase twinning had been destroyed in some way. The rocks include cataclasites (quartzitic breccia) and mylonites which are essentially composed of extensively crushed and shattered feldspar grains in a microcrystalline mosaic of quartz in which irregular patches, streaks and single crystals of coarse quartz also occur. The quartz grains display strongly developed undulose extinction, deformation lameLlae and deformation bands, which occasionally tend to be replaced by "Boehrn lamellae" or relic lines of inclusions. Many authors have been interested in investigating the origin of twinning; they have looked for the cause of the twinning, but nobody has ever given thought to the elimination except Vance (1961). Ramberg (1961, p. 11) mentions albite crystals having a few narrow lamellae of albite twins confined to the middle part, while on either side are the untwinned parts. His explana- tion is that the feldspar started to grow as a twinned nucleus but continued to grow in an untwinned state, due probably to rapid growth for a relatively short-time just after nucleation, and a subsequent slower growth.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • High-Pressure Metamorphism and Uplift of the Olympic Subduction Complex
    High-pressure metamorphism and uplift of the Olympic subduction complex Mark T. Brandon, Arthur R. Calderwood* Department of Geology and Geophysics, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 ABSTRACT The discovery of the critical �mblage lawsonite + quartz + calcite indicates that a significant part of the Cenozoic Olympic subduction complex of northwestern Washington State formed by underplating at a depth of about 11 km. The deep structural level exposed in this area is attributed to the presence of a 10-km-high arch in the underlying Juan de Fuca plate. We postulate that this arch was formed when the southern Cordilleran coastline swung westward as a result of middle Miocene to recent extension in the Basin and Range province. INTRODUCTION Olympic subduction complex accumulated by the western Olympic subduction complex and The Cascadia convergent margin, which subduction underplating. In this paper we exam­ that of Hawkins (1967) on prehnite-bearing flanks the western side of Oregon, Washington, ine the metamorphic and uplift history of this rocks in the Mount Olympus area (MO in Fig. and Vancouver Island, marks the subduction subduction complex and postulate a new inter­ l ). Zones in the remaining areas were delimited boundary between North America and the Juan pretation for formation of the Olympic uplift. using samples collected during their mapping de Fuca plate. Along much of this margin, the (Tabor and Cady, 1978b) in the central and fore-arc region is underlain by a flat to gently METAMORPHISM OF THE eastern Olympic Peninsula. dipping sheet of lower Eocene basalt (Crescent, OLYMPIC SUBDUCTION COMPLEX We have examined thin sections from 138 Siletz, and correlative formations; Wells et al., Tabor and Cady (l978b) delimited a general sandstone samples from all parts of the Olympic 1984), which represents the basement on which metamorphic zonation decreasing in grade from subduction complex; most, however, are from a subsequent fore-arc basin has accumulated east to west.
    [Show full text]