Common Source Amplifier (Biased by Current Source)

Total Page:16

File Type:pdf, Size:1020Kb

Common Source Amplifier (Biased by Current Source) ESE 372 / Spring 2013 / Lecture 21 Common Source Amplifier (biased by current source) 1 ESE 372 / Spring 2013 / Lecture 21 Common Source Amplifier with RSS (improves dynamic range) 2 ESE 372 / Spring 2013 / Lecture 21 Common Gate Amplifier (biased by current source) 3 ESE 372 / Spring 2013 / Lecture 21 Common Drain Amplifier (biased by current source) 4 ESE 372 / Spring 2013 / Lecture 21 MOSFET model with capacitances 5 ESE 372 / Spring 2013 / Lecture 21 Unity gain frequency/bandwidth 6 ESE 372 / Spring 2013 / Lecture 21 Frequency response of CS amplifier 7 ESE 372 / Spring 2013 / Lecture 21 Low frequency cutoff fL 8 ESE 372 / Spring 2013 / Lecture 21 High frequency cutoff fH 9 ESE 372 / Spring 2013 / Lecture 21 Miller Transformation Equivalent circuit 10 ESE 372 / Spring 2013 / Lecture 21 Miller Transformation in CS amplifier Equivalent circuit 11 ESE 372 / Spring 2013 / Lecture 21 Another way of looking at it –open circuit time constants. The high frequency 3dB cutoff can be estimated as: Open circuit time constants corresponding to each capacitor in the small signal equivalent circuit: 12 ESE 372 / Spring 2013 / Lecture 21 Another way of looking at it –open circuit time constants. 13 ESE 372 / Spring 2013 / Lecture 21 Common Gate Amplifier Moderate freq. equivalent circuit 14 ESE 372 / Spring 2013 / Lecture 21 Common Gate Amplifier 15 ESE 372 / Spring 2013 / Lecture 21 High frequency cut‐off of CS amplifier with capacitive load 16 ESE 372 / Spring 2013 / Lecture 21 Capacitive load and open circuit time constants LPF at the output due to capacitive load dominates. We need voltage buffer to deal with CL 17 ESE 372 / Spring 2013 / Lecture 21 Common Drain Amplifier with capacitive load Low/Moderate ffqreq. equivalent circuit 18 ESE 372 / Spring 2013 / Lecture 21 Common Drain Amplifier with capacitive load 19 ESE 372 / Spring 2013 / Lecture 21 Basic concept of tuned amplifier 20.
Recommended publications
  • Common Drain - Wikipedia, the Free Encyclopedia 10-5-17 下午7:07
    Common drain - Wikipedia, the free encyclopedia 10-5-17 下午7:07 Common drain From Wikipedia, the free encyclopedia In electronics, a common-drain amplifier, also known as a source follower, is one of three basic single- stage field effect transistor (FET) amplifier topologies, typically used as a voltage buffer. In this circuit the gate terminal of the transistor serves as the input, the source is the output, and the drain is common to both (input and output), hence its name. The analogous bipolar junction transistor circuit is the common- collector amplifier. In addition, this circuit is used to transform impedances. For example, the Thévenin resistance of a combination of a voltage follower driven by a voltage source with high Thévenin resistance is reduced to only the output resistance of the voltage follower, a small resistance. That resistance reduction makes the combination a more ideal voltage source. Conversely, a voltage follower inserted between a small load resistance and a driving stage presents an infinite load to the driving stage, an advantage in coupling a voltage signal to a small load. Characteristics At low frequencies, the source follower pictured at right has the following small signal characteristics.[1] Voltage gain: Current gain: Input impedance: Basic N-channel JFET source Output impedance: (the parallel notation indicates the impedance follower circuit (neglecting of components A and B that are connected in parallel) biasing details). The variable gm that is not listed in Figure 1 is the transconductance of the device (usually given in units of siemens). References http://en.wikipedia.org/wiki/Common_drain Page 1 of 2 Common drain - Wikipedia, the free encyclopedia 10-5-17 下午7:07 1.
    [Show full text]
  • Notes for Lab 1 (Bipolar (Junction) Transistor Lab)
    ECE 327: Electronic Devices and Circuits Laboratory I Notes for Lab 1 (Bipolar (Junction) Transistor Lab) 1. Introduce bipolar junction transistors • “Transistor man” (from The Art of Electronics (2nd edition) by Horowitz and Hill) – Transistors are not “switches” – Base–emitter diode current sets collector–emitter resistance – Transistors are “dynamic resistors” (i.e., “transfer resistor”) – Act like closed switch in “saturation” mode – Act like open switch in “cutoff” mode – Act like current amplifier in “active” mode • Active-mode BJT model – Collector resistance is dynamically set so that collector current is β times base current – β is assumed to be very high (β ≈ 100–200 in this laboratory) – Under most conditions, base current is negligible, so collector and emitter current are equal – β ≈ hfe ≈ hFE – Good designs only depend on β being large – The active-mode model: ∗ Assumptions: · Must have vEC > 0.2 V (otherwise, in saturation) · Must have very low input impedance compared to βRE ∗ Consequences: · iB ≈ 0 · vE = vB ± 0.7 V · iC ≈ iE – Typically, use base and emitter voltages to find emitter current. Finish analysis by setting collector current equal to emitter current. • Symbols – Arrow represents base–emitter diode (i.e., emitter always has arrow) – npn transistor: Base–emitter diode is “not pointing in” – pnp transistor: Emitter–base diode “points in proudly” – See part pin-outs for easy wiring key • “Common” configurations: hold one terminal constant, vary a second, and use the third as output – common-collector ties collector
    [Show full text]
  • I. Common Base / Common Gate Amplifiers
    I. Common Base / Common Gate Amplifiers - Current Buffer A. Introduction • A current buffer takes the input current which may have a relatively small Norton resistance and replicates it at the output port, which has a high output resistance • Input signal is applied to the emitter, output is taken from the collector • Current gain is about unity • Input resistance is low • Output resistance is high. V+ V+ i SUP ISUP iOUT IOUT RL R is S IBIAS IBIAS V− V− (a) (b) B. Biasing = /α ≈ • IBIAS ISUP ISUP EECS 6.012 Spring 1998 Lecture 19 II. Small Signal Two Port Parameters A. Common Base Current Gain Ai • Small-signal circuit; apply test current and measure the short circuit output current ib iout + = β v r gmv oib r − o ve roc it • Analysis -- see Chapter 8, pp. 507-509. • Result: –β ---------------o ≅ Ai = β – 1 1 + o • Intuition: iout = ic = (- ie- ib ) = -it - ib and ib is small EECS 6.012 Spring 1998 Lecture 19 B. Common Base Input Resistance Ri • Apply test current, with load resistor RL present at the output + v r gmv r − o roc RL + vt i − t • See pages 509-510 and note that the transconductance generator dominates which yields 1 Ri = ------ gm µ • A typical transconductance is around 4 mS, with IC = 100 A • Typical input resistance is 250 Ω -- very small, as desired for a current amplifier • Ri can be designed arbitrarily small, at the price of current (power dissipation) EECS 6.012 Spring 1998 Lecture 19 C. Common-Base Output Resistance Ro • Apply test current with source resistance of input current source in place • Note roc as is in parallel with rest of circuit g v m ro + vt it r − oc − v r RS + • Analysis is on pp.
    [Show full text]
  • ECE 255, MOSFET Basic Configurations
    ECE 255, MOSFET Basic Configurations 8 March 2018 In this lecture, we will go back to Section 7.3, and the basic configurations of MOSFET amplifiers will be studied similar to that of BJT. Previously, it has been shown that with the transistor DC biased at the appropriate point (Q point or operating point), linear relations can be derived between the small voltage signal and current signal. We will continue this analysis with MOSFETs, starting with the common-source amplifier. 1 Common-Source (CS) Amplifier The common-source (CS) amplifier for MOSFET is the analogue of the common- emitter amplifier for BJT. Its popularity arises from its high gain, and that by cascading a number of them, larger amplification of the signal can be achieved. 1.1 Chararacteristic Parameters of the CS Amplifier Figure 1(a) shows the small-signal model for the common-source amplifier. Here, RD is considered part of the amplifier and is the resistance that one measures between the drain and the ground. The small-signal model can be replaced by its hybrid-π model as shown in Figure 1(b). Then the current induced in the output port is i = −gmvgs as indicated by the current source. Thus vo = −gmvgsRD (1.1) By inspection, one sees that Rin = 1; vi = vsig; vgs = vi (1.2) Thus the open-circuit voltage gain is vo Avo = = −gmRD (1.3) vi Printed on March 14, 2018 at 10 : 48: W.C. Chew and S.K. Gupta. 1 One can replace a linear circuit driven by a source by its Th´evenin equivalence.
    [Show full text]
  • Precision Current Sources and Sinks Using Voltage References
    Application Report SNOAA46–June 2020 Precision Current Sources and Sinks Using Voltage References Marcoo Zamora ABSTRACT Current sources and sinks are common circuits for many applications such as LED drivers and sensor biasing. Popular current references like the LM134 and REF200 are designed to make this choice easier by requiring minimal external components to cover a broad range of applications. However, sometimes the requirements of the project may demand a little more than what these devices can provide or set constraints that make them inconvenient to implement. For these cases, with a voltage reference like the TL431 and a few external components, one can create a simple current bias with high performance that is flexible to fit meet the application requirements. Current sources and sinks have been covered extensively in other Texas Instruments application notes such as SBOA046 and SLYC147, but this application note will cover other common current sources that haven't been previously discussed. Contents 1 Precision Voltage References.............................................................................................. 1 2 Current Sink with Voltage References .................................................................................... 2 3 Current Source with Voltage References................................................................................. 4 4 References ................................................................................................................... 6 List of Figures 1 Current
    [Show full text]
  • Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
    Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline • NMOS inverter with resistor pull-up –The inverter • NMOS inverter with current-source pull-up • Complementary MOS (CMOS) inverter • Static analysis of CMOS inverter Reading Assignment: Howe and Sodini; Chapter 5, Section 5.4 6.012 Spring 2007 Lecture 12 1 1. NMOS inverter with resistor pull-up: Dynamics •CL pull-down limited by current through transistor – [shall study this issue in detail with CMOS] •CL pull-up limited by resistor (tPLH ≈ RCL) • Pull-up slowest VDD VDD R R VOUT: VOUT: HI LO LO HI V : VIN: IN C LO HI CL HI LO L pull-down pull-up 6.012 Spring 2007 Lecture 12 2 1. NMOS inverter with resistor pull-up: Inverter design issues Noise margins ↑⇒|Av| ↑⇒ •R ↑⇒|RCL| ↑⇒ slow switching •gm ↑⇒|W| ↑⇒ big transistor – (slow switching at input) Trade-off between speed and noise margin. During pull-up we need: • High current for fast switching • But also high incremental resistance for high noise margin. ⇒ use current source as pull-up 6.012 Spring 2007 Lecture 12 3 2. NMOS inverter with current-source pull-up I—V characteristics of current source: iSUP + 1 ISUP r i oc vSUP SUP _ vSUP Equivalent circuit models : iSUP + ISUP r r vSUP oc oc _ large-signal model small-signal model • High current throughout voltage range vSUP > 0 •iSUP = 0 for vSUP ≤ 0 •iSUP = ISUP + vSUP/ roc for vSUP > 0 • High small-signal resistance roc. 6.012 Spring 2007 Lecture 12 4 NMOS inverter with current-source pull-up Static Characteristics VDD iSUP VOUT VIN CL Inverter characteristics : iD = V 4 3 VIN VGS I + DD SUP roc 2 1 = vOUT vDS VDD (a) VOUT 1 2 3 4 VIN (b) High roc ⇒ high noise margins 6.012 Spring 2007 Lecture 12 5 PMOS as current-source pull-up I—V characteristics of PMOS: + S + VSG _ VSD G B − _ + IDp 5 V + D − V + G − V − D − ID(VSG,VSD) (a) = VSG 3.5 V 300 V = V + V = V − 1 V 250 (triode SD SG Tp SG region) V = 3 V 200 SG − IDp (µA) (saturation region) 150 = VSG 25 100 = 0, 0.5, VSG 1 V (cutoff region) V = 2 V 50 SG = VSG 1.5 V 12345 VSD (V) (b) Note: enhancement-mode PMOS has VTp <0.
    [Show full text]
  • Chapter 10 Differential Amplifiers
    Chapter 10 Differential Amplifiers 10.1 General Considerations 10.2 Bipolar Differential Pair 10.3 MOS Differential Pair 10.4 Cascode Differential Amplifiers 10.5 Common-Mode Rejection 10.6 Differential Pair with Active Load 1 Audio Amplifier Example An audio amplifier is constructed as above that takes a rectified AC voltage as its supply and amplifies an audio signal from a microphone. CH 10 Differential Amplifiers 2 “Humming” Noise in Audio Amplifier Example However, VCC contains a ripple from rectification that leaks to the output and is perceived as a “humming” noise by the user. CH 10 Differential Amplifiers 3 Supply Ripple Rejection vX Avvin vr vY vr vX vY Avvin Since both node X and Y contain the same ripple, their difference will be free of ripple. CH 10 Differential Amplifiers 4 Ripple-Free Differential Output Since the signal is taken as a difference between two nodes, an amplifier that senses differential signals is needed. CH 10 Differential Amplifiers 5 Common Inputs to Differential Amplifier vX Avvin vr vY Avvin vr vX vY 0 Signals cannot be applied in phase to the inputs of a differential amplifier, since the outputs will also be in phase, producing zero differential output. CH 10 Differential Amplifiers 6 Differential Inputs to Differential Amplifier vX Avvin vr vY Avvin vr vX vY 2Avvin When the inputs are applied differentially, the outputs are 180° out of phase; enhancing each other when sensed differentially. CH 10 Differential Amplifiers 7 Differential Signals A pair of differential signals can be generated, among other ways, by a transformer.
    [Show full text]
  • Transistor Current Source
    PY 452 Advanced Physics Laboratory Hans Hallen Electronics Labs One electronics project should be completed. If you do not know what an op-amp is, do either lab 2 or lab 3. A written report is due, and should include a discussion of the circuit with inserted equations and plots as appropriate to substantiate the words and show that the measurements were taken. The report should not consist of the numbered items below and short answers, but should be one coherent discussion that addresses most of the issues brought out in the numbered items below. This is not an electronics course. Familiarity with electronics concepts such as input and output impedance, noise sources and where they matter, etc. are important in the lab AND SHOULD APPEAR IN THE REPORT. The objective of this exercise is to gain familiarity with these concepts. Electronics Lab #1 Transistor Current Source Task: Build and test a transistor current source, , +V with your choice of current (but don't exceed the transistor, power supply, or R ratings). R1 Rload You may wish to try more than one current. (1) Explain your choice of R1, R2, and Rsense. VCE (a) In particular, use the 0.6 V drop of VBE - rule for current flow to calculate I in R2 VBE Rsense terms of Rsense, and the Ic/Ib rule to estimate Ib hence the values of R1&R2. (2) Try your source over a wide range of Rload values, plot Iload vs. Rload and interpret. You may find it instructive to look at VBE and VCE with a floating (neither side grounded) multimeter.
    [Show full text]
  • JFE150 Ultra-Low Noise, Low Gate Current, Audio, N-Channel JFET Datasheet
    JFE150 SLPS732 – JUNE 2021 JFE150 Ultra-Low Noise, Low Gate Current, Audio, N-Channel JFET 1 Features and yields excellent noise performance for currents from 50 μA to 20 mA. When biased at 5 mA, the • Ultra-low noise: device yields 0.8 nV/√Hz of input-referred noise, – Voltage noise: giving ultra-low noise performance with extremely high input impedance (> 1 TΩ). The JFE150 also • 0.8 nV/√Hz at 1 kHz, IDS = 5 mA features integrated diodes connected to separate • 0.9 nV/√Hz at 1 kHz, IDS = 2 mA – Current noise: 1.8 fA/√Hz at 1 kHz clamp nodes to provide protection without the addition • Low gate current: 10 pA (max) of high leakage, nonlinear external diodes. • Low input capacitance: 24 pF at VDS = 5 V The JFE150 can withstand a high drain-to-source • High gate-to-drain and gate-to-source breakdown voltage of 40-V, as well as gate-to-source and gate- voltage: –40 V to-drain voltages down to –40 V. The temperature • High transconductance: 68 mS range is specified from –40°C to +125°C. The device • Packages: Small SC70 and SOT-23 (Preview) is offered in 5-pin SOT-23 and SC-70 packages. 2 Applications Device Information • Microphone inputs PART NUMBER PACKAGE(1) BODY SIZE (NOM) • Hydrophones and marine equipment SOT-23 (5) - Preview 2.90 mm × 1.60 mm JFE150 • DJ controllers, mixers, and other DJ equipment SC-70 (5) 2.00 mm × 1.25 mm • Professional audio mixer or control surface • Guitar amplifier and other music instrument (1) For all available packages, see the package option addendum at the end of the data sheet.
    [Show full text]
  • Current Source & Source Transformation Notes
    EE301 – CURRENT SOURCES / SOURCE CONVERSION Learning Objectives a. Analyze a circuit consisting of a current source, voltage source and resistors b. Convert a current source and a resister into an equivalent circuit consisting of a voltage source and a resistor c. Evaluate a circuit that contains several current sources in parallel Ideal sources An ideal source is an active element that provides a specified voltage or current that is completely independent of other circuit elements. DC Voltage DC Current Source Source Constant Current Sources The voltage across the current source (Vs) is dependent on how other components are connected to it. Additionally, the current source voltage polarity does not have to follow the current source’s arrow! 1 Example: Determine VS in the circuit shown below. Solution: 2 Example: Determine VS in the circuit shown above, but with R2 replaced by a 6 k resistor. Solution: 1 8/31/2016 EE301 – CURRENT SOURCES / SOURCE CONVERSION 3 Example: Determine I1 and I2 in the circuit shown below. Solution: 4 Example: Determine I1 and VS in the circuit shown below. Solution: Practical voltage sources A real or practical source supplies its rated voltage when its terminals are not connected to a load (open- circuited) but its voltage drops off as the current it supplies increases. We can model a practical voltage source using an ideal source Vs in series with an internal resistance Rs. Practical current source A practical current source supplies its rated current when its terminals are short-circuited but its current drops off as the load resistance increases. We can model a practical current source using an ideal current source in parallel with an internal resistance Rs.
    [Show full text]
  • Class 08: NMOS, Pseudo-NMOS
    Class 08: NMOS, Pseudo-NMOS Topics: •02 NMOS Logic Gates •03 NMOS Logic Gates •04 Pseudo-NMOS •05 Pseudo-NMOS •06 Transistor Equivalency Dr. Joseph Elias; Dr. Andrew Mason 1 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) § nMOS Inverter with resistive load § nMOS Inverter with depletion load Depletion nMOS, Vtn < 0 always ON for VGS = 0 § switch level model W/L Q1 > W/L Q2 so Q1 can “pull down” Vout § nMOS NOR gate c = a+b (a) NMOS off (b) NMOS on want to realize resistor with a transistor § nMOS NAND gate § Including transistor resistance c = ab rds º channel resistance RL >> rds so output close to 0V Dr. Joseph Elias; Dr. Andrew Mason 2 Class 08: NMOS, Pseudo-NMOS NMOS (Martin c. 1) • General nMOS schematic Examples: depletion-load nMOS logic – single load transistor – parallel and series nMOS transistor to complete the compliment of the desired function i.e., they determine when the output is low “0” rather than high “1” Dr. Joseph Elias; Dr. Andrew Mason 3 Class 08: NMOS, Pseudo-NMOS Pseudo-NMOS (Martin c. 4) •NMOS Common-Source Amplifier with •Pseudo-NMOS inverter with PMOS load current sourrce load and load capacitor •Choose W/L so that: •Choose Vbias in between VDD and ground Q2 always on since |Vgs| > |Vtp| Q2 in saturation if (for VDD=3.3) |Vds| > |Veff| > |Vgs| – |Vt| VDD – Vout > |Vgs| - |Vt| Vout < VDD - |Vgs| + |Vt| Vout < 1.65 + Vt < 2.45 Q1 in saturation if Vgs = Vin > Vt Vds > Veff > Vgs – Vt => •Current-source realized with a PMOS transistor Vout > Vin - Vt •Power Dissipation: Veff = Vgs - Vt output low (Vin is high): P = IL * VDD Vds = Vgs + Vdg at saturation, Vdg=-Vt output high (Vin is low): P = 0 Valid if: average static dissipation: P = ½ * IL * VDD Veff = |Vds-sat| > |Vgs| - |Vtp| -want drain at least Vt from gate Dr.
    [Show full text]
  • Experiment #6- Part-1 the FET Common Source Amplifier
    University of Anbar Lab. Name: Electronic I Experiment no.: 7 College of Engineering Lab. Supervisor: Munther N. Thiyab Dept. of Electrical Engineering Experiment #6- Part-1 The FET Common Source Amplifier Object The purpose of this experiment is to test the performance of the common source amplifier using the self-bias circuit. Required Parts and Equipment's 1. Electronic Test Board. (M110) 2. Dual Polarity Variable DC Power Supply 3. Digital Multimeters. 4. Dual-Channel Oscilloscope. 5. Function Generator. 6. N-Channel JFET 2N3823 7. Resistors, R5=100KΩ, R6=10KΩ, R8=1KΩ, R7=2.2KΩ Theory The common source amplifier configuration is widely used amongst other JFET configurations and can provide both high voltages gain and large input impedance. In this configuration, the input signal is applied to the gate and the output signal is taken from the drain, while the source terminal being the reference or common. In order to work as an amplifier, the JFET should be properly biased by setting the gate-source voltage which results in the required drain current. The N-channel JFET requires that the gate-source voltage always be less negative than the pinch-off voltage, but less than zero. Since virtually no gate current flows due to the JFET’s high input impedance, the gate voltage is essentially at ground level. Consequently, using only a drain-supply voltage, the required negative quiescent gate-source voltage is developed by the voltage drop across the source resistor of the self-bias circuit shown in Fig.1. This circuit is one of the simplest and practical bias circuits for JFET amplifiers in which a single power supply is used.
    [Show full text]