Pt.Tmn.Perathl'es Warm Thwugl.10L!1-F the Comltry in April, Gard(Ms Everywhere Come Alive. It Is a Busy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Season Extenders in the Flower Garden by Pat Holloway and Pat Wagner
University of Alaska Fairbanks School of Natural Resources and Extension Georgeson Botanical Notes No. 57 (1993) - Revised 2014 Season Extenders in the Flower Garden by Pat Holloway and Pat Wagner No one gardening in Alaska needs to be reminded that the growing season is very short, especially after the summer of 1992 when the frost-free season at the Garden extended only from May 16 to September 10, and the snow-free season was the shortest ever recorded. Every year we survey the Garden after our first hard frost to identify flowers that still look good and can provide a bit of color even as the days get shorter and we begin to anticipate the first snowfall. On the following page is a list of annuals and perennials that sur- vived the first severe frost on September 10 with an overnight low of 13°F (-10°C). In some instances, only the foliage survived, but they still provided a bit of green color at season’s end. Prior to September 10, temperatures at or slightly below 32°F (0°C) were recorded on three dates, but damage was negligible. Although the flower beds are located fairly close together on a gently sloping hillside, we noticed some differences in damage in the various beds. Flowers in one bed survived the frost, whereas plants of the same species in an adjacent bed were killed. This may be related to differences in cultivars since we did not repeat cultivars in different beds, but it also could be related to slight differences in microclimate from one bed to another. -
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
Perennials For
Perennials for Sun Botanic Name Common Name Achillea millefolium “Appleblossom” Appleblossom Yarrow Achillea millefolium “Paprika” Paprika Yarrow Achillea “Moonshine” Moonshine Yarrow Achillea “Summer Wine” Summer Wine Yarrow Achillea “Terracotta” Terracotta Yarrow Agastache aurantiaca “Coronado” Coronado Hyssop Agastache “Blue Fortune” Blue Fortune Hyssop Agastache cana Hummingbird Mint Agastache cana “Sonoran Sunset” Sonoran Sunset Hyssop Agastache “Coronado Red” Coronado Red Hyssop Agastache rupestris “Sunset” Sunset Hyssop Alea rosea Hollyhock Alyssum montanum Mountain Gold Alyssum Amorpha canescens Leadplant Amsonia jonesii Colorado Desert Blue Star Amsonia hubrichtii Blue Star Anacyclus depressus Mat Daisy Anchusa azurea Bugloss Antennaria dioica Pussytoes Anthemis marshalliana Golden Marguerite Anthemis “Sauce Hollandaise” Ox-eye Chamomile Arabis blepharophylla “Spring Charm” Rock Cress Arabis causcasica “Snow cap” White Rock Cress Armeria maritime Thrift, Sea Pinks Artemisia “Powis Castle” Powis Castle Wormwood Artemisia schmidtiana “Silver Mound” Silver Mound Wormwood Artemisia stelleriana “Silver Brocade” Silver Brocade Wormwood Artemisia versicolor “Seafoam” Sea Foam Wormwood Asclepias tuberosa Butterfly Weed Aster alpinus Alpine Aster Aster frikarti Monk’s Aster Aster nova angliae New England Aster Aster nova belgii Michaelmas Aster Aubrieta Purple Rock Cress Aurinia saxatilis Basket of Gold Baptisia australis False Indigo Belamcanda chinensis Blackberry Lily Berlandiera lyrata Chocolate Flower Boltonia asteroids Star Flower -
Inbreeding and Inbreeding Depression of Paeonia Decomposita (Paeoniaceae), a Threatened Endemic Plant to China Shi‑Quan Wang*
Wang Bot Stud (2019) 60:28 https://doi.org/10.1186/s40529-019-0276-8 ORIGINAL ARTICLE Open Access Inbreeding and inbreeding depression of Paeonia decomposita (Paeoniaceae), a threatened endemic plant to China Shi‑Quan Wang* Abstract Background: Small populations are predominantly vulnerable to inbreeding and inbreeding depression (ID). Owing to increased levels of inbreeding on individuals in small populations, ID could decrease the population growth rate, as well as its efective size, and exacerbate the extinction risk. Inbreeding depression remains a crucial area of research in conservation biology, ecology, and evolutionary biology. This study aims to elucidate the reproductive biology, inbreeding, and ID of Paeonia decomposita and to conserve, manage, and improve them better in the future. Results: Paeonia decomposita belongs to a xenogamous category and is partially self‑compatible; moreover, it requires pollinators for seed production. Lately, the occurrence of pollination and pollinator limitations has afected the seed set. Low seed set primarily correlated with an abnormality of meiosis in the pollen mother cell, moderate to low genetic diversity, drought and extreme weather, pollinator limitation, or carpel space limit. One of the primary reasons for endangered mechanism in P. decomposita is the low seed set under natural conditions. The cumulative value of ID was positive, and outcrossed progeny outperformed selfed progeny. Conclusions: Paeonia decomposita requires pollinators to ensure seed production either through autogamy, geito‑ nogamy, or allogamy. It is both allogamous and partially self‑compatible, as well as a successful outcrosser. Inbreeding occurs frequently and results in ID, which imposes a potential threat to the survival of populations. -
Western Prairie Ecological Landscape
Chapter 23 Western Prairie Ecological Landscape Where to Find the Publication The Ecological Landscapes of Wisconsin publication is available online, in CD format, and in limited quantities as a hard copy. Individual chapters are available for download in PDF format through the Wisconsin DNR website (http://dnr.wi.gov/, keyword “landscapes”). The introductory chapters (Part 1) and supporting materials (Part 3) should be downloaded along with individual ecological landscape chapters in Part 2 to aid in understanding and using the ecological landscape chapters. In addition to containing the full chapter of each ecological landscape, the website highlights key information such as the ecological landscape at a glance, Species of Greatest Conservation Need, natural community management opportunities, general management opportunities, and ecological landscape and Landtype Association maps (Appendix K of each ecological landscape chapter). These web pages are meant to be dynamic and were designed to work in close association with materials from the Wisconsin Wildlife Action Plan as well as with information on Wisconsin’s natural communities from the Wisconsin Natural Heritage Inventory Program. If you have a need for a CD or paper copy of this book, you may request one from Dreux Watermolen, Wisconsin Department of Natural Resources, P.O. Box 7921, Madison, WI 53707. Photos (L to R): Prothonotary Warbler, photo by John and Karen Hollingsworth, U.S. Fish and Wildlife Service; prairie ragwort, photo by Dick Bauer; Loggerhead Shrike, photo by Dave Menke; yellow gentian, photo by June Dobberpuhl; Blue-winged Teal, photo by Jack Bartholmai. Suggested Citation Wisconsin Department of Natural Resources. 2015. The ecological landscapes of Wisconsin: An assessment of ecological resources and a guide to planning sustainable management. -
Colonial Garden Plants
COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds. -
'Camellia T'. Synonym for 'Donckelaeri'. (Masayoshi). TC Cole
T. T. Fendig. 1951, American Camellia Yearbook, p.77 as ‘Camellia T’. Synonym for ‘Donckelaeri’. (Masayoshi). T.C. Cole. Trewidden Estate Nursery, 1995, Retail Camellia List, p.8. Abbreviation for Thomas Cornelius Cole. T.C. Patin. (C.japonica) SCCS., 1976, Camellia Nomenclature, p.147: Light red. Very large, full, semi- double with irregular, large petals and a spray of large stamens. Originated in USA by T.C. Patin, Hammond, Louisiana. Sport: T.C. Patin Variegated. T.C. Patin Variegated. (C.japonica), SCCS., 1976, Camellia Nomenclature, p.147 as ‘T.C. Patin Var.’: A virus variegated form of T.C. Patin - Light red blotched white. Originated in USA by T.C. Patin, Hammond, Louisiana. T.D. Wipper. Nagoya Camellia Society Bulletin, 1992, No.25. Synonym for Dave’s Weeper. T.G. Donkelari. Lindo Nurseries Price List, 1949, p.7. Synonym for ‘Donckelaeri’. (Masayoshi). T.K. Blush. (C.japonica) Wilmot, 1943, Camellia Variety Classification Report, 1943, p.14: A light pink sport of T.K. Variegated. Originated in USA. Synonym: ‘T.K. Pink’. T.K. Number 4. Florida Nursery and Landscaping Co. Catalogue, 1948 as ‘T.K. No.4’. Synonym for T.K. Variegated. T.K. Pink. Morris, 1954, RHS., The Rhododendron and Camellia Yearbook, p.113. Synonym for T.K. Blush. T.K. Red. Semmes Nursery Catalogue, 1942-1943, p.21. Synonym for T.K. Variegated Red. T.K. Variegata. Kiyono Nursery Catalogue, 1942-1943. Synonym for T.K. Variegated. T.K. Variegated. (C.japonica) Kiyono Overlook Nursery Catalogue, 1934, p.14: Semi-double. Light pink edged dark pink. Gerbing’s Azalea Gardens Catalogue, 1938-1939: Semi-double, white flowers striped pink, rose and lavender, some flowers solid colour, purple and pink. -
Anime/Games/J-Pop/J-Rock/Vocaloid
Anime/Games/J-Pop/J-Rock/Vocaloid Deutsch Alice Im Wunderland Opening Anne mit den roten Haaren Opening Attack On Titans So Ist Es Immer Beyblade Opening Biene Maja Opening Catpain Harlock Opening Card Captor Sakura Ending Chibi Maruko-Chan Opening Cutie Honey Opening Detektiv Conan OP 7 - Die Zeit steht still Detektiv Conan OP 8 - Ich Kann Nichts Dagegen Tun Detektiv Conan Opening 1 - 100 Jahre Geh'n Vorbei Detektiv Conan Opening 2 - Laufe Durch Die Zeit Detektiv Conan Opening 3 - Mit Aller Kraft Detektiv Conan Opening 4 - Mein Geheimnis Detektiv Conan Opening 5 - Die Liebe Kann Nicht Warten Die Tollen Fussball-Stars (Tsubasa) Opening Digimon Adventure Opening - Leb' Deinen Traum Digimon Adventure Opening - Leb' Deinen Traum (Instrumental) Digimon Adventure Wir Werden Siegen (Instrumental) Digimon Adventure 02 Opening - Ich Werde Da Sein Digimon Adventure 02 Opening - Ich Werde Da Sein (Insttrumental) Digimon Frontier Die Hyper Spirit Digitation (Instrumental) Digimon Frontier Opening - Wenn das Feuer In Dir Brennt Digimon Frontier Opening - Wenn das Feuer In Dir Brennt (Instrumental) (Lange Version) Digimon Frontier Wenn Du Willst (Instrumental) Digimon Tamers Eine Vision (Instrumental) Digimon Tamers Ending - Neuer Morgen Digimon Tamers Neuer Morgen (Instrumental) Digimon Tamers Opening - Der Grösste Träumer Digimon Tamers Opening - Der Grösste Träumer (Instrumental) Digimon Tamers Regenbogen Digimon Tamers Regenbogen (Instrumental) Digimon Tamers Sei Frei (Instrumental) Digimon Tamers Spiel Dein Spiel (Instrumental) DoReMi Ending Doremi -
Fatty Acid Composition of Some Ranunculaceae Seed Oils Eugene Ucciani3, Alain Debal3, Michel Gruberb, and Robert L
Fatty Acid Composition of Some Ranunculaceae Seed Oils Eugene Ucciani3, Alain Debal3, Michel Gruberb, and Robert L. Wolffc a Chimie Organique Appliquee, CNRS, URA 1409, Faculte des Sciences, Case 412, 13397 Marseille Cedex 20, France b Botanique et Ecologie, CNRS-URA 1152, Faculte des Sciences, 13397 Marseille Cedex 20, France c ISTAB, Lipochimie Alimentaire, Universite de Bordeaux 1, Allee des Facultes, 33405 Talence, France Z. Naturforsch. 51c, 151-154 (1996); received November 11, 1995/January 5, 1996 Ranunculaceae, Fatty Acid Composition, Columbinic Acid, Gamma-Linolenic Acid, Taxonomy The fatty acid composition of seed oils of eight Ranunculaceae was determinated in order to characterize new sources of gamma-linolenic acid. Fatty acids were identified as fatty acid methyl esters (FAME) by capillary gas-liquid chromatography (GC) and capillary GC- Fourier transform infrared spectroscopy (FTIR). For trienic FAME the use of a cyanopropyl- polysiloxane stationary phase (CP-Sil 88) allowed the separation with high resolution of methyl ester of columbinic acid (trans-5,c/s-9,ds-12 18:3) and gamma-linolenic acid (cis-6,cis-9,cis-12 18:3). The results confirmed the presence of columbinic acid in Thalictrum seed oils, and that of gamma-linolenic acid in A nem one and related species seed oils. The taxonomic subdivision of Ranunculaceae into sub-families and tribes, which resulted from morphological considera tions, did not account for the above results. Introduction binic acid (COL) or trans-5,cis-9,cis-12 18:3 Species of the botanical family Ranunculaceae (Bagby et al., 1962; Kaufmann and Barve, 1965; are herbaceous plants bearing dry fruits such as Spencer et al., 1970; Takagi et al., 1983; Wu et al., achenes and follicles. -
Redalyc.Asteráceas De Importancia Económica Y Ambiental Segunda
Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Del Vitto, Luis A.; Petenatti, Elisa M. Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Multequina, núm. 24, 2015, pp. 47-74 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42844132004 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 ISSN 1852-7329 on-line Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Asteraceae of economic and environmental importance Second part: Other useful and noxious plants Luis A. Del Vitto y Elisa M. Petenatti Herbario y Jardín Botánico UNSL/Proy. 22/Q-416 y Cátedras de Farmacobotánica y Famacognosia, Fac. de Quím., Bioquím. y Farmacia, Univ. Nac. San Luis, Ej. de los Andes 950, D5700HHW San Luis, Argentina. [email protected]; [email protected]. Resumen El presente trabajo completa la síntesis de las especies de asteráceas útiles y nocivas, que ini- ciáramos en la primera contribución en al año 2009, en la que fueron discutidos los caracteres generales de la familia, hábitat, dispersión y composición química, los géneros y especies de importancia -
Flora of North Central Texas Flora of North Central Texas
SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D. -
Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E
Chapter38 Anthemideae Christoph Oberprieler, Sven Himmelreich, Mari Källersjö, Joan Vallès, Linda E. Watson and Robert Vogt HISTORICAL OVERVIEW The circumscription of Anthemideae remained relatively unchanged since the early artifi cial classifi cation systems According to the most recent generic conspectus of Com- of Lessing (1832), Hoff mann (1890–1894), and Bentham pos itae tribe Anthemideae (Oberprieler et al. 2007a), the (1873), and also in more recent ones (e.g., Reitbrecht 1974; tribe consists of 111 genera and ca. 1800 species. The Heywood and Humphries 1977; Bremer and Humphries main concentrations of members of Anthemideae are in 1993), with Cotula and Ursinia being included in the tribe Central Asia, the Mediterranean region, and southern despite extensive debate (Bentham 1873; Robinson and Africa. Members of the tribe are well known as aromatic Brettell 1973; Heywood and Humphries 1977; Jeff rey plants, and some are utilized for their pharmaceutical 1978; Gadek et al. 1989; Bruhl and Quinn 1990, 1991; and/or pesticidal value (Fig. 38.1). Bremer and Humphries 1993; Kim and Jansen 1995). The tribe Anthemideae was fi rst described by Cassini Subtribal classifi cation, however, has created considerable (1819: 192) as his eleventh tribe of Compositae. In a diffi culties throughout the taxonomic history of the tribe. later publication (Cassini 1823) he divided the tribe into Owing to the artifi ciality of a subtribal classifi cation based two major groups: “Anthémidées-Chrysanthémées” and on the presence vs. absence of paleae, numerous attempts “An thé midées-Prototypes”, based on the absence vs. have been made to develop a more satisfactory taxonomy presence of paleae (receptacular scales).