Italy - the Sorrento Peninsula
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Colonial Garden Plants
COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds. -
Report on the Bmig Field Meeting at Haltwhistle 2014
Bulletin of the British Myriapod & Isopod Group Volume 30 (2018) REPORT ON THE BMIG FIELD MEETING AT HALTWHISTLE 2014 Paul Lee1, A.D. Barber2 and Steve J. Gregory3 1 Little Orchard, Bentley, Ipswich, Suffolk, IP9 2DW, UK. E-mail: [email protected] 2 7 Greenfield Drive, Ivybridge, Devon, PL21 0UG. E-mail: [email protected] 3 4 Mount Pleasant Cottages, Church Street, East Hendred, Oxfordshire, OX12 8LA, UK. E-mail: [email protected] INTRODUCTION The 2014 BMIG field weekend, held from 24th to 27th April, was based at Saughy Rigg, half a mile north of Hadrian’s Wall, near Haltwhistle in Northumberland but very close to the border with Cumbria to the west and Scotland to the north. The main aim of the meeting was to record in central areas of northern England (VC 66, 67 and 70) where few records existed previously but many attendees were drawn also to sites on the east coast of England (VC 66) and to the Scottish coast on the Solway Firth (VC 73). All these vice counties had been visited by BMG/BISG or BMIG in the previous twenty years but large parts of them remained under-recorded. The annual joint field meeting of BMG and BISG in 1995 was held at Rowrah Hall near Whitehaven (VC 70). Gregory (1995) reports 24 millipede species found during the weekend including Choneiulus palmatus new to VC 70. A list of the centipede appears not to have been published. Bilton (1995) reports 14 woodlouse species including Eluma caelata found at Maryport, its most northerly global location, and Armadillidium pictum in the Borrowdale oakwoods. -
Fatty Acid Composition of Some Ranunculaceae Seed Oils Eugene Ucciani3, Alain Debal3, Michel Gruberb, and Robert L
Fatty Acid Composition of Some Ranunculaceae Seed Oils Eugene Ucciani3, Alain Debal3, Michel Gruberb, and Robert L. Wolffc a Chimie Organique Appliquee, CNRS, URA 1409, Faculte des Sciences, Case 412, 13397 Marseille Cedex 20, France b Botanique et Ecologie, CNRS-URA 1152, Faculte des Sciences, 13397 Marseille Cedex 20, France c ISTAB, Lipochimie Alimentaire, Universite de Bordeaux 1, Allee des Facultes, 33405 Talence, France Z. Naturforsch. 51c, 151-154 (1996); received November 11, 1995/January 5, 1996 Ranunculaceae, Fatty Acid Composition, Columbinic Acid, Gamma-Linolenic Acid, Taxonomy The fatty acid composition of seed oils of eight Ranunculaceae was determinated in order to characterize new sources of gamma-linolenic acid. Fatty acids were identified as fatty acid methyl esters (FAME) by capillary gas-liquid chromatography (GC) and capillary GC- Fourier transform infrared spectroscopy (FTIR). For trienic FAME the use of a cyanopropyl- polysiloxane stationary phase (CP-Sil 88) allowed the separation with high resolution of methyl ester of columbinic acid (trans-5,c/s-9,ds-12 18:3) and gamma-linolenic acid (cis-6,cis-9,cis-12 18:3). The results confirmed the presence of columbinic acid in Thalictrum seed oils, and that of gamma-linolenic acid in A nem one and related species seed oils. The taxonomic subdivision of Ranunculaceae into sub-families and tribes, which resulted from morphological considera tions, did not account for the above results. Introduction binic acid (COL) or trans-5,cis-9,cis-12 18:3 Species of the botanical family Ranunculaceae (Bagby et al., 1962; Kaufmann and Barve, 1965; are herbaceous plants bearing dry fruits such as Spencer et al., 1970; Takagi et al., 1983; Wu et al., achenes and follicles. -
Baal Hill SIS Species List
Baal Hill Special Invertebrate Site species list This is a list of invertebrate species which have been recorded at Baal Hill Special Invertebrate Site. Not all the records included in this list have been verified. The aim of the list is to give recorders an idea of the range of species found at the site. To the best of our knowledge, this list of records is correct, as of November 2019. Scientific name English name Bees Andrena scotica Chocolate mining bee Bombus lapidarius Red-tailed bumblebee Bombus lucorum agg. Bombus pascuorum Common carder bee Bombus pratorum Early bumblebee Beetles Athous haemorrhoidalis Cantharis nigricans Cantharis pellucida Carabus problematicus Cassidinae sp. Tortoise beetle sp. Chilocorus renipustulatus Kidney-spot ladybird Coccinella septempunctata 7-spot ladybird Leptura quadrifasciata 4-banded longhorn beetle Nicrophorus humator Black sexton beetle Nicrophorus investigator Banded sexton beetle Oiceoptoma thoracicum Red-breasted carrion beetle Rhagium mordax Black-spotted longhorn beetle Rhagonycha fulva Common red soldier beetle Bugs Anthocoris nemorum Common flower bug Calocoris alpestris Campyloneura virgula Elasmostethus interstinctus Birch shieldbug Harpocera thoracica Pentatoma rufipes Forest shieldbug/ Red-legged shieldbug Philaenus spumarius Cuckoo-spit insect/ common froghopper Butterflies Aglais io Peacock Anthocharis cardamines Orange-tip Aphantopus hyperantus Ringlet Lasiommata megera Wall Lycaena phlaeas Small copper Maniola jurtina Meadow brown Pararge aegeria Speckled wood Pieris napi Green-veined -
Role of Arthropods in Maintaining Soil Fertility
Agriculture 2013, 3, 629-659; doi:10.3390/agriculture3040629 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Role of Arthropods in Maintaining Soil Fertility Thomas W. Culliney Plant Epidemiology and Risk Analysis Laboratory, Plant Protection and Quarantine, Center for Plant Health Science and Technology, USDA-APHIS, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606, USA; E-Mail: [email protected]; Tel.: +1-919-855-7506; Fax: +1-919-855-7595 Received: 6 August 2013; in revised form: 31 August 2013 / Accepted: 3 September 2013 / Published: 25 September 2013 Abstract: In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites). The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. -
Italy - the Sorrento Peninsula
Italy - The Sorrento Peninsula Naturetrek Tour Report 14 – 23 April 2010 Hazel Dormouse - Muscardinus avellanarius Orchis pauciflora Naturetrek Group 2010 Lunar Double-stripe Moth Report and images compiled by Paul Harmes and Dave Nevitt Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 England 0NG T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report Italy - The Sorrento Peninsula Tour Leaders: Paul Harmes (Naturetrek Botanist) Dave Nevitt (Naturetrek Ornithologist) Participants: Barbara Bowden Cathy Brown Sara Corall Lorraine Ellison Richard Ellison Marylin Kavanagh Bill Kavanagh Ann Le Sage-Crinland John Matthews Jennifer Rae Kim Taylor Barbara Vickers Penny Waite Dennis Waite Janet Wickham Paul Wickham Day 1 Wednesday 14th April Fine warm and sunny with some cloud Sixteen tour members met with Paul and Dave at Gatwick Airport's North Terminal for our British Airways flight to Naples. After arriving in the city we soon collected our luggage and made our way into the arrivals hall. Here, Paul and Dave completed the formalities for hiring of the mini-buses, before we set off for the shuttle to take us to the parking area. Once the vehicles were loaded, we set off for Sorrento where our route took us past the imposing Mount Vesuvius on our left and the beautiful Bay of Naples on the right. We left the motorway at Castellmare di Stabia, and turned onto the busy, but scenic coastal road, entering the first of three long tunnels which cut through the mountain. Emerging, we were soon enjoying the views of the Bay of Sorrento, including the islands of Capri and Ischia, and the rugged coastline. -
Comparison of Invertebrates and Lichens Between Young and Ancient
Comparison of invertebrates and lichens between young and ancient yew trees Bachelor agro & biotechnology Specialization Green management 3th Internship report / bachelor dissertation Student: Clerckx Jonathan Academic year: 2014-2015 Tutor: Ms. Joos Isabelle Mentor: Ms. Birch Katherine Natural England: Kingley Vale NNR Downs Road PO18 9BN Chichester www.naturalengland.org.uk Comparison of invertebrates and lichens between young and ancient yew trees. Natural England: Kingley Vale NNR Foreword My dissertation project and internship took place in an ancient yew woodland reserve called Kingley Vale National Nature Reserve. Kingley Vale NNR is managed by Natural England. My dissertation deals with the biodiversity in these woodlands. During my stay in England I learned many things about the different aspects of nature conservation in England. First of all I want to thank Katherine Birch (manager of Kingley Vale NNR) for giving guidance through my dissertation project and for creating lots of interesting days during my internship. I want to thank my tutor Isabelle Joos for suggesting Kingley Vale NNR and guiding me during the year. I thank my uncle Guido Bonamie for lending me his microscope and invertebrate books and for helping me with some identifications of invertebrates. I thank Lies Vandercoilden for eliminating my spelling and grammar faults. Thanks to all the people helping with identifications of invertebrates: Guido Bonamie, Jon Webb, Matthew Shepherd, Bryan Goethals. And thanks to the people that reacted on my posts on the Facebook page: Lichens connecting people! I want to thank Catherine Slade and her husband Nigel for being the perfect hosts of my accommodation in England. -
Diversity and Function of Fungi Associated with the Fungivorous Millipede, Brachycybe
bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii † Angie M. Maciasa, Paul E. Marekb, Ember M. Morrisseya, Michael S. Brewerc, Dylan P.G. Shortd, Cameron M. Staudera, Kristen L. Wickerta, Matthew C. Bergera, Amy M. Methenya, Jason E. Stajiche, Greg Boycea, Rita V. M. Riof, Daniel G. Panaccionea, Victoria Wongb, Tappey H. Jonesg, Matt T. Kassona,* a Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA b Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA c Department of Biology, East Carolina University, Greenville, NC 27858, USA d Amycel Spawnmate, Royal Oaks, CA, 95067, USA e Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA f Department of Biology, West Virginia University, Morgantown, WV, 26506, USA g Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA † Scientific article No. XXXX of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia, USA, 26506. * Corresponding author. Current address: G103 South Agricultural Sciences Building, Morgantown, WV, 26506, USA. E-mail address: [email protected] (M.T. Kasson). bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Synergistic Interactions Between Detritivores Disappear Under Reduced Rainfall
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318592; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running head: Rainfall control on detritivore activity 2 Title: Synergistic interactions between detritivores disappear under reduced rainfall 3 Author names and affiliations: François-Xavier Joly*,a, Euan McAvoya, Jens-Arne Subkea 4 a Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, 5 Stirling, Scotland, UK 6 Corresponding author: François-Xavier Joly; francois-xavier.joly [at] stir.ac.uk 7 8 Abstract 9 Understanding the consequences of altered rainfall patterns on litter decomposition is critical 10 to predicting the feedback effect of climate change on atmospheric CO2 concentrations. 11 While their effect on microbial decomposition received considerable attention, their effect on 12 litter fragmentation by detritivores, the other dominant decomposition pathway, remains 13 largely unexplored. Particularly, it remains unclear how different detritivore species and their 14 interactions responds to changes in rainfall quantity and frequency. To fill this knowledge 15 gap, we determined the contribution to litter decomposition of two detritivore species 16 (millipede and isopod), separately and in combination, under contrasting rainfall quantity and 17 frequency in a temperate forest. Although halving rainfall quantity and frequency decreased 18 top-soil moisture by 7.8 and 13.1%, respectively, neither millipede- nor isopod-driven 19 decomposition were affected by these changes. -
Chilopoda, Diplopoda) (With Species List for Germany)
IJM 6: 85–105 (2011) A peer-reviewed open-access journal Critical reflections on German Red Lists of endangered myriapod species...INTERNATIONAL JOURNAL85 OF doi: 10.3897/ijm.6.2175 RESEARCH ARTICLE www.pensoft.net/journals/ijm Myriapodology Critical reflections on German Red Lists of endangered myriapod species (Chilopoda, Diplopoda) (with species list for Germany) Karin Voigtländer1, Hans S. Reip1, Peter Decker1, Jörg Spelda2 1 Department of Soil Zoology, Senckenberg Museum of Natural History Görlitz, P.O. Box 300154, 02806 Görlitz, Germany 2 Section Arthropoda Varia, Bavarian State Collection of Zoology, Menzinger Straße 71, 80638 Munich, Germany Corresponding author: Karin Voigtländer ([email protected]) Academic editor: R. Mesibov | Received 30 September 2011 | Accepted 5 December 2011 | Published 20 December 2011 Citation: Voigtländer K, Reip HS, Decker P, Spelda J (2011) Critical reflections on German Red Lists of endangered myriapod species (Chilopoda, Diplopoda) (with species list for Germany). In: Mesibov R, Short M (Eds) Proceedings of the 15th International Congress of Myriapodology, 18–22 July 2011, Brisbane, Australia. International Journal of Myriapodology 6: 85–105. doi: 10.3897/ijm.6.2175 Abstract The Red Lists of endangered species published by the German Bundesamt für Naturschutz (BfN - the Federal Agency of Nature Conservation) are essential tools for the nature protection in Germany since the 1970s. Although many groups of insects appear in the German Red Lists, small and inconspicuous soil or- ganisms, among them millipedes and centipedes, have in the past been ignored. In the last few years great efforts have been made to assess these two groups, resulting in Red Lists of German Myriapoda. -
Millipedes Centipedes and Woodlice
Millipedes Centipedes and ♦ Woodlice of the Sheffield Area Wf Paul Richards | - r w WAKEFIELD HUDDERSFIELD INISTONE MALTBY CASTLETON PEAK DISTRICT BUXTON. BAK EWELL' ,! t \ i/% HARTINGTON >N?'MATLOCK MANSFIELD i £ Sheffield and its surrounding region as studied by the Sorby Natural History Society. The approximate boundaries of the Peak District National Park are also indicated. MILLIPEDES CENTIPEDES AND WOODLGCE OF THE SHEFFIELD AREA J P RICHARDS ********** Published by Sorby Natural History Society, Sheffield Sheffield City Museum ********** Sorby Record Special Series No. 10 1995 ISSN 0260-2032 PREFACE “Of these hideous and angry insects we know little, except the figure and noxious qualities. Though with us there are insects somewhat resembling them in form, we are placed at a happy distance from such as are really formidable. With us they seldom grow above an inch long; in the tropical climates they are often found above a quarter of a yard”. Thus were the 'scolopendra' and 'gaily worm’ introduced by Oliver Goldsmith in 1864 in his ‘History of the earth and animated nature, Book 1: Insects of the first order’. Clearly a man of the ‘creepy-crawly’ school of taxonomic description! More recently millipedes and woodlice have been described as “fascinating and, dare I say it, endearing creatures" (Hopkin & Read 1992; Hopkin 1991) and “very interesting animals ... eminently accessible and obliging ... very useful" {Sutton 1972). It has to be said that the animals referred to in this publication do indeed creep, crawl and generally behave in a manner inconsistent with furred and feathered vertebrates. The majority do not possess irridescent courtship embellishments, nor do they display humorous anthropomorphic behaviour. -
Living Collection of FLORA GRAECA Sibthorpiana : FROM
SIBBALDIA: 171 The Journal of Botanic Garden Horticulture, No. 10 LIVING COLLECTION OF FLORA GRAECA SIBTHORPIANA: FROM THE FOLIOS OF THE MONUMENTAL EDITION TO THE BEDS OF A BOTANIC GARDEN IN GREECE Sophia Rhizopoulou1, Alexander Lykos2, Pinelopi Delipetrou3 & Irene Vallianatou4 ABstrAct The results of a survey of vascular plants illustrated in the 19th-century publication Flora Graeca Sibthorpiana (FGS) and grown in Diomedes Botanic Garden (DBG) in Athens metropolitan area in Greece reveal a total number of 274 taxa belonging to 67 families, using the Raunkiaer system of categorising plants by life form (Raunkiaer, 1934). Therophytes dominate with 36 per cent, while hemicryptophytes, chamephytes and geophytes follow with 16 per cent, 14 per cent and 14 per cent respectively. In terms of life cycle, 60 per cent are perennials, 36 per cent annuals and 4 per cent other growth forms adapted to environmental disturbance. Although anthropo- genic pressures and environmental stresses have caused loss of habitat and resulted in profound landscape transformation in the eastern Mediterranean, DBG contributes to the maintenance of approximately one-third of the plants collected in territories of the Levant in 1787. This living collection constitutes an important testimony to the scientific value, heritage and plant diversity described in FGS. Statistics are provided comparing the plants collected and illustrated for FGS and those now growing in DBG. IntroDuctIon Flora Graeca Sibthorpiana (Sibthorp and Smith, 1806–1840) is considered by many to be the most splendid and expensive flora ever produced and was printed in ten folio volumes between 1806 and 1840 (Stearn, 1967; Lack & Mabberley, 1999; Harris, 2007).