High-Speed Soft-Processor Architecture for FPGA Overlays by Charles Eric Laforest a Thesis Submitted in Conformity with the Requ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Latticemico32 Development Kit User's Guide for Latticeecp
LatticeMico32 Development Kit User’s Guide for LatticeECP Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 May 2007 Copyright Copyright © 2007 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. -
Latticemico32 Software Developer User Guide
LatticeMico32 Software Developer User Guide May 2014 Copyright Copyright © 2014 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device, DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex -
Co-Simulation Between Cλash and Traditional Hdls
MASTER THESIS CO-SIMULATION BETWEEN CλASH AND TRADITIONAL HDLS Author: John Verheij Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) Computer Architecture for Embedded Systems (CAES) Exam committee: Dr. Ir. C.P.R. Baaij Dr. Ir. J. Kuper Dr. Ir. J.F. Broenink Ir. E. Molenkamp August 19, 2016 Abstract CλaSH is a functional hardware description language (HDL) developed at the CAES group of the University of Twente. CλaSH borrows both the syntax and semantics from the general-purpose functional programming language Haskell, meaning that circuit de- signers can define their circuits with regular Haskell syntax. CλaSH contains a compiler for compiling circuits to traditional hardware description languages, like VHDL, Verilog, and SystemVerilog. Currently, compiling to traditional HDLs is one-way, meaning that CλaSH has no simulation options with the traditional HDLs. Co-simulation could be used to simulate designs which are defined in multiple lan- guages. With co-simulation it should be possible to use CλaSH as a verification language (test-bench) for traditional HDLs. Furthermore, circuits defined in traditional HDLs, can be used and simulated within CλaSH. In this thesis, research is done on the co-simulation of CλaSH and traditional HDLs. Traditional hardware description languages are standardized and include an interface to communicate with foreign languages. This interface can be used to include foreign func- tions, or to make verification and co-simulation possible. Because CλaSH also has possibilities to communicate with foreign languages, through Haskell foreign function interface (FFI), it is possible to set up co-simulation. The Verilog Procedural Interface (VPI), as defined in the IEEE 1364 standard, is used to set-up the communication and to control a Verilog simulator. -
An Open-Source Python-Based Hardware Generation, Simulation
An Open-Source Python-Based Hardware Generation, Simulation, and Verification Framework Shunning Jiang Christopher Torng Christopher Batten School of Electrical and Computer Engineering, Cornell University, Ithaca, NY { sj634, clt67, cbatten }@cornell.edu pytest coverage.py hypothesis ABSTRACT Host Language HDL We present an overview of previously published features and work (Python) (Verilog) in progress for PyMTL, an open-source Python-based hardware generation, simulation, and verification framework that brings com- FL DUT pelling productivity benefits to hardware design and verification. CL DUT generate Verilog synth RTL DUT PyMTL provides a natural environment for multi-level modeling DUT' using method-based interfaces, features highly parametrized static Sim FPGA/ elaboration and analysis/transform passes, supports fast simulation cosim ASIC and property-based random testing in pure Python environment, Test Bench Sim and includes seamless SystemVerilog integration. Figure 1: PyMTL’s workflow – The designer iteratively refines the hardware within the host Python language, with the help from 1 INTRODUCTION pytest, coverage.py, and hypothesis. The same test bench is later There have been multiple generations of open-source hardware reused for co-simulating the generated Verilog. FL = functional generation frameworks that attempt to mitigate the increasing level; CL = cycle level; RTL = register-transfer level; DUT = design hardware design and verification complexity. These frameworks under test; DUT’ = generated DUT; Sim = simulation. use a high-level general-purpose programming language to ex- press a hardware-oriented declarative or procedural description level (RTL), along with verification and evaluation using Python- and explicitly generate a low-level HDL implementation. Our pre- based simulation and the same TB. -
Corecommander for Microprocessors and Microcontrollers
CORECOMMANDER FOR MICROPROCESSORS AND MICROCONTROLLERS Factsheet Direct access to memory and peripheral devices (I/O) for testing, debugging and in-system programming • Direct access to memory and peripheral (I/O) devices of a micro- processor through its (JTAG) debug interface • Read data from, write data to memory and peripherals without software programming • At-speed execution of read and write cycles • Testing and debugging of the connectivity of processor memory and peripherals with at-speed bus cycles without software programming • Easy programming of processor flash memory without software programming Corecommander provides high-level functions to write data to and read data from microprocessor memory Order information CoreComm Micro (core) and I/O addresses without software programming. (core) = ARM 7, ARM 9, ARM 11, Cortex-A, Cortex-R, CoreCommander functions are applied via the JTAG Cortex-M, Blackfin, PXA2xx, PXA3xx, IXP4xx, PowerPC- interface. MPC500 family, PowerPC-MPC5500 family, PowerPC- MPC5600 family, C28x, XC166, Tricore, PIC32 Applications CoreCommander is used in design debug, manufactu- ring test and (field) service for many different applica- [1] if the uProcessor also contains a boundary-scan register then teh tests and in-system tions such as: programming operations can also be done using the boundary-scan register instead of the CoreCommander. Whether in that case the CoreCommander or the boundary-scan register is used depends on preference or performance. • Diagnosing “dead-kernel” boards; no embedded code is required to perform memory reads and Background writes. A uP performs read and write operations on its bus to ac- cess memory and I/O locations. The read and write cycles • Determining the right settings for the peripheral normally result when the uP executes a program that is controller (DDR controller, flash memory controller, stored in memory. -
Implementation, Verification and Validation of an Openrisc-1200
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 1, 2019 Implementation, Verification and Validation of an OpenRISC-1200 Soft-core Processor on FPGA Abdul Rafay Khatri Department of Electronic Engineering, QUEST, NawabShah, Pakistan Abstract—An embedded system is a dedicated computer system in which hardware and software are combined to per- form some specific tasks. Recent advancements in the Field Programmable Gate Array (FPGA) technology make it possible to implement the complete embedded system on a single FPGA chip. The fundamental component of an embedded system is a microprocessor. Soft-core processors are written in hardware description languages and functionally equivalent to an ordinary microprocessor. These soft-core processors are synthesized and implemented on the FPGA devices. In this paper, the OpenRISC 1200 processor is used, which is a 32-bit soft-core processor and Fig. 1. General block diagram of embedded systems. written in the Verilog HDL. Xilinx ISE tools perform synthesis, design implementation and configure/program the FPGA. For verification and debugging purpose, a software toolchain from (RISC) processor. This processor consists of all necessary GNU is configured and installed. The software is written in C components which are available in any other microproces- and Assembly languages. The communication between the host computer and FPGA board is carried out through the serial RS- sor. These components are connected through a bus called 232 port. Wishbone bus. In this work, the OR1200 processor is used to implement the system on a chip technology on a Virtex-5 Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open- FPGA board from Xilinx. -
Programmable Logic Design Grzegorz Budzyń Lecture 11: Microcontroller
ProgrammableProgrammable LogicLogic DesignDesign GrzegorzGrzegorz BudzyBudzy ńń LLectureecture 11:11: MicrocontrollerMicrocontroller corescores inin FPGAFPGA Plan • Introduction • PicoBlaze • MicroBlaze • Cortex-M1 Introduction Introduction • There are dozens of 8-bit microcontroller architectures and instruction sets • Modern FPGAs can efficiently implement practically any 8-bit microcontroller • Available FPGA soft cores support popular instruction sets such as the PIC, 8051, AVR, 6502, 8080, and Z80 microcontrollers • Each significant FPGA producer offers their own soft core solution Introduction • Microcontrollers and FPGAs both successfully implement practically any digital logic function. • Each solution has unique advantages in cost, performance, and ease of use. • Microcontrollers are well suited to control applications, especially with widely changing requirements. • The FPGA resources required to implement the microcontroller are relatively constant. Introduction • The same FPGA logic is re-used by the various microcontroller instructions, conserving resources. • The program memory requirements grow with increasing complexity • Programming control sequences or state machines in assembly code is often easier than creating similar structures in FPGA logic • Microcontrollers are typically limited by performance. Each instruction executes sequentially. Introduction – block diagram Source:[1] FPGA vs Soft Core Microcontroller: – Easy to program, excellent for control and state machine applications – Resource requirements remain constant -
Intro to Programmable Logic and Fpgas
CS 296-33: Intro to Programmable Logic and FPGAs ADEL EJJEH UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN © Adel Ejjeh, UIUC, 2015 2 Digital Logic • In CS 233: • Logic Gates • Build Logic Circuits • Sum of Products ?? F = (A’.B)+(B.C)+(A.C’) A B Black F Box C © Adel Ejjeh, UIUC, 2015 3 Programmable Logic Devices (PLDs) PLD PLA PAL CPLD FPGA (Programmable (Programmable (Complex PLD) (Field Prog. Logic Array) Array Logic) Gate Array) •2-level structure of •Enhanced PLAs •For large designs •Has a much larger # of AND-OR gates with reduced costs •Collection of logic blocks with programmable multiple PLDs with •Larger interconnection connections an interconnection networK structure •Largest manufacturers: Xilinx - Altera Slide taken from Prof. Chehab, American University of Beirut © Adel Ejjeh, UIUC, 2015 4 Combinational Programmable Logic Devices PLAs, CPLDs © Adel Ejjeh, UIUC, 2015 5 Programmable Logic Arrays (PLAs) • 2-level AND-OR device • Programmable connections • Used to generate SOP • Ex: 4x3 PLA Slide adapted from Prof. Chehab, American University of Beirut © Adel Ejjeh, UIUC, 2015 6 PLAs contd • O1 = I1.I2’ + I4.I3’ • O2 = I2.I3.I4’ + I4.I3’ • O3 = I1.I2’ + I2.I1’ Slide adapted from Prof. Chehab, American University of Beirut © Adel Ejjeh, UIUC, 2015 7 Programmable Array Logic (PALs) • More Versatile than PLAs • User Programmable AND array followed by fixed OR gates • Flip-flops/Buffers with feedback transforming output ports into I/O ports © Adel Ejjeh, UIUC, 2015 8 Complex PLDs (CPLD) • Programmable PLD blocks (PALs) I/O Block I/O I/O -
PDF 19308 Kb ADSP-Bf50x Blackfin ® Processor Hardware Reference
ADSP-BF50x Blackfin® Processor Hardware Reference Revision 1.2, February 2013 Part Number 82-100101-01 Analog Devices, Inc. One Technology Way Norwood, Mass. 02062-9106 a Copyright Information © 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu- ment may not be reproduced in any form without prior, express written consent from Analog Devices, Inc. Printed in the USA. Disclaimer Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by impli- cation or otherwise under the patent rights of Analog Devices, Inc. Trademark and Service Mark Notice The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc. All other brand and product names are trademarks or service marks of their respective owners. CONTENTS PREFACE Purpose of This Manual .................................................................. li Intended Audience .......................................................................... li Manual Contents ........................................................................... lii What’s New in This Manual ........................................................... lv Technical Support ......................................................................... -
Openpiton: an Open Source Manycore Research Framework
OpenPiton: An Open Source Manycore Research Framework Jonathan Balkind Michael McKeown Yaosheng Fu Tri Nguyen Yanqi Zhou Alexey Lavrov Mohammad Shahrad Adi Fuchs Samuel Payne ∗ Xiaohua Liang Matthew Matl David Wentzlaff Princeton University fjbalkind,mmckeown,yfu,trin,yanqiz,alavrov,mshahrad,[email protected], [email protected], fxiaohua,mmatl,[email protected] Abstract chipset Industry is building larger, more complex, manycore proces- sors on the back of strong institutional knowledge, but aca- demic projects face difficulties in replicating that scale. To Tile alleviate these difficulties and to develop and share knowl- edge, the community needs open architecture frameworks for simulation, synthesis, and software exploration which Chip support extensibility, scalability, and configurability, along- side an established base of verification tools and supported software. In this paper we present OpenPiton, an open source framework for building scalable architecture research proto- types from 1 core to 500 million cores. OpenPiton is the world’s first open source, general-purpose, multithreaded manycore processor and framework. OpenPiton leverages the industry hardened OpenSPARC T1 core with modifica- Figure 1: OpenPiton Architecture. Multiple manycore chips tions and builds upon it with a scratch-built, scalable uncore are connected together with chipset logic and networks to creating a flexible, modern manycore design. In addition, build large scalable manycore systems. OpenPiton’s cache OpenPiton provides synthesis and backend scripts for ASIC coherence protocol extends off chip. and FPGA to enable other researchers to bring their designs to implementation. OpenPiton provides a complete verifica- tion infrastructure of over 8000 tests, is supported by mature software tools, runs full-stack multiuser Debian Linux, and has been widespread across the industry with manycore pro- is written in industry standard Verilog. -
A Pythonic Approach for Rapid Hardware Prototyping and Instrumentation
A Pythonic Approach for Rapid Hardware Prototyping and Instrumentation John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMahan and Timothy Sherwood University of California, Santa Barbara, CA, 93106 USA Email: fjclow, gtzimpragos, deeksha, sguo, jmcmahan, [email protected] Abstract—We introduce PyRTL, a Python embedded hardware To achieve these goals, PyRTL intentionally restricts users design language that helps concisely and precisely describe to a set of reasonable digital design practices. PyRTL’s small digital hardware structures. Rather than attempt to infer a and well-defined internal core structure makes it easy to add good design via HLS, PyRTL provides a wrapper over a well- defined “core” set of primitives in a way that empowers digital new functionality that works across every design, including hardware design teaching and research. The proposed system logic transforms, static analysis, and optimizations. Features takes advantage of the programming language features of Python such as elaboration-through-execution (e.g. introspection), de- to allow interesting design patterns to be expressed succinctly, and sign and simulation without leaving Python, and the option encourage the rapid generation of tooling and transforms over to export to, or import from, common HDLs (Verilog-in via a custom intermediate representation. We describe PyRTL as a language, its core semantics, the transform generation interface, Yosys [1] and BLIF-in, Verilog-out) are also supported. More and explore its application to several different design patterns and information about PyRTL’s high level flow can be found in analysis tools. Also, we demonstrate the integration of PyRTL- Figure 1. generated hardware overlays into Xilinx PYNQ platform. -
Implementation of PS2 Keyboard Controller IP Core for on Chip Embedded System Applications
The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 4 ||Pages|| 48-50||2013|| ISSN(e): 2319 – 1813 ISSN(p): 2319 – 1805 Implementation of PS2 Keyboard Controller IP Core for On Chip Embedded System Applications 1, 2, Medempudi Poornima, Kavuri Vijaya Chandra 1,M.Tech Student 2,Associate Proffesor. 1,2,Prakasam Engineering College,Kandukuru(post), Kandukuru(m.d), Prakasam(d.t). -----------------------------------------------------------Abstract----------------------------------------------------- In many case on chip systems are used to reduce the development cycles. Mostly IP (Intellectual property) cores are used for system development. In this paper, the IP core is designed with ALTERA NIOSII soft-core processors as the core and Cyclone III FPGA series as the digital platform, the SOPC technology is used to make the I/O interface controller soft-core such as microprocessors and PS2 keyboard on a chip of FPGA. NIOSII IDE is used to accomplish the software testing of system and the hardware test is completed by ALTERA Cyclone III EP3C16F484C6 FPGA chip experimental platform. The result shows that the functions of this IP core are correct, furthermore it can be reused conveniently in the SOPC system. ---------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 8 April 2013 Date Of Publication: 25, April.2013 ---------------------------------------------------------------------------------------------------------------------------------------