Targeting CDK4 overcomes EMT-mediated tumor heterogeneity and therapeutic resistance in KRAS mutant lung cancer Aparna Padhye1,2, Jessica M. Konen1, B. Leticia Rodriguez1, Jared J. Fradette1, Joshua K. Ochieng1, Lixia Diao3, Jing Wang3, Wei Lu4, Luisa S. Solis4, Harsh Batra4, Maria G. Raso4, Michael D. Peoples5, Rosalba Minelli5, Alessandro Carugo5, Christopher A. Bristow5, Don L. Gibbons1,6* 1. Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 2. University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA. 3. Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 4. Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 5. TRACTION Platform, Division of Therapeutics Development, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 6. Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. *Corresponding author. Email:
[email protected] Supplemental Methods Plasmids, Transfections, and Lentiviral Generation and Transduction Transfections of si-RNAs werr performed using the Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific). Constitutive Cdkn1a overexpression cell lines were generated by using Cdkn1a mouse Tagged ORF Clone (Origene (NM_007669)). Cdkn1a ORF was also subcloned into dox-inducible pTRIPZ-GFP vector to generate doxycycline inducible cell lines using EcoRI and AgeI restriction cut sites. Constitutive Cdkn1a shRNAs were purchased from Milipore sigma. The sequences used in the experiments are listed in table S11. Dox- inducible shRNAs were expressed in Tet-pLKO-puro vector with a scramble sequence as the non-targeting control.