Old World Fruitbat Phylogeny: Evidence for Convergent Evolution and an Endemic African Clade (Megachiroptera͞12s Rrna͞valine Trna͞convergence͞biogeography)

Total Page:16

File Type:pdf, Size:1020Kb

Old World Fruitbat Phylogeny: Evidence for Convergent Evolution and an Endemic African Clade (Megachiroptera͞12s Rrna͞valine Trna͞convergence͞biogeography) Proc. Natl. Acad. Sci. USA Vol. 94, pp. 5716–5721, May 1997 Evolution Old World fruitbat phylogeny: Evidence for convergent evolution and an endemic African clade (megachiropteray12S rRNAyvaline tRNAyconvergenceybiogeography) LAURA J. HOLLAR AND MARK S. SPRINGER Department of Biology, University of California, Riverside, CA 92521 Communicated by Charles G. Sibley, Retired, Santa Rosa, CA, March 18, 1997 (received for review November 12, 1996) ABSTRACT Knud Andersen (1912, Catalogue of the Chi- roptera in the Collections of the British Museum: I. Megachirop- tera, British Museum of Natural History, London) divided Old World fruitbats (family Pteropodidae) into the rousettine, cynopterine, epomophorine, eonycterine, and notopterine sec- tions. The latter two sections comprise the subfamily Macro- glossinae; members of this subfamily exhibit specializations for nectarivory (e.g., elongated, protrusible, brushy tongues) and cluster together in cladistic analyses based on anatomical characters. Other evidence, including single-copy DNA hy- bridization, suggests that macroglossines are either paraphyl- etic or polyphyletic; this implies that adaptations for pollen and nectar feeding evolved independently in different macro- glossine lineages or were lost in nonmacroglossines after evolving in a more basal common ancestor. Hybridization data also contradict Andersen’s phylogeny in providing support for FIG. 1. Lateral views of the skulls and mandibles of (a) Rousettus an endemic African clade that includes representatives of aegyptiacus,(b)Pteralopex atrata,(c)Epomophorus gambianus,(d) three of Andersen’s sections. Here, we present complete Cynopterus sphinx,(e)Melonycteris melonops, and (f) Megaloglossus woermanni mitochondrial 12S rRNA and valine tRNA gene sequences for . Modified after Andersen (1). 20 pteropodids, including representatives of all of Andersen’s sections, and examine the aforementioned controversies. Max- the rousettines, Andersen judged Rousettus (Fig. 1a) as similar imum likelihood, minimum evolution, and maximum parsi- in morphology to the ancestor of all pteropodids (e.g., no mony analyses all contradict macroglossine monophyly and surface cusps on P4 and M1, no narrowing and degeneration of provide support for an African clade that associates Megalo- the cheekteeth, rostrum of moderate length). Rousettus has a glossus and Lissonycteris and those two with Epomophorus.In mixed diet that includes soft fruits andyor fruit juices as well conjunction with the DNA hybridization results, there are now as nectar (3, 4). Among other rousettines (Fig. 1b), Acerodon, independent lines of molecular evidence suggesting: (i) con- Pteralopex, and some species of Pteropus routinely deal with vergent evolution of specializations for nectarivory, at least in fruit pulp and have anatomical features consistent with these Megaloglossus versus other macroglossines, and (ii) a previ- dietary preferences (1), e.g., robust dentary with expanded ously unrecognized clade of endemic Africa taxa. Estimates of coronoid process and masseteric fossa. The Epomophorus divergence time based on 12S rRNA and DNA hybridization section contains genera that are African in distribution; mem- data are also in good agreement and suggest that extant bers of this section are characterized by a distinct flattening of fruitbats trace back to a common ancestor 25 million to 36 the braincase (Fig. 2c). Like Rousettus, many epomophorines million years ago. are mixed feeders (i.e., combination of frugivory and nec- tarivory) and have anatomical features (e.g., of the mandible) Knud Andersen’s monograph (1) remains the most compre- that are intermediate between Acerodon-Pteralopex and mac- hensive treatment of the Megachiroptera (Old World fruit- roglossines. The Cynopterus section (Fig. 1d) contains forms bats) even though several new genera (e.g., Aproteles, Paranyc- characterized by traits such as a short rostrum and a tendency timene) have been described (2, 3). Andersen included all to develop cusps on P4 and M1. Included in Andersen’s fruitbats in the family Pteropodidae with three subfamilies: a Cynopterus section is the aberrant Nyctimene, which is unique paraphyletic Pteropodinae, which contains the majority of among fruitbats with its partially insectivorous diet. Finally, the species and genera; the monotypic Harpyionycterinae; and the eonycterine and notopterine sections together comprise the presumed monophyletic subfamily Macroglossinae containing Macroglossinae. Macroglossines are unique among fruitbats in taxa with specializations for nectarivory. Andersen recognized having a more elongated, slender, protrusible tongue; further, the Macroglossinae as a sister-taxon to other living fruitbats. the tip and lateral area of the base of the tongue are covered Beyond his subfamilial distinctions, Andersen divided fruit- by long, filiform papillae that give the tongue a brushlike bats into five sections. Nonmacroglossines are placed in the appearance and function in extracting pollen from flowers (see rousettine, epomophorine, and cynopterine sections. Among Fig. 2). Osteological modifications in macroglossines include cheektooth reduction and degeneration, a narrower and more The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked ‘‘advertisement’’ in accordance with 18 U.S.C. §1734 solely to indicate this fact. Abbreviations: sc, single copy; mt, mitochondrial; Myr, million years; T-PTP, topology-dependent permutation tail probability. Copyright q 1997 by THE NATIONAL ACADEMY OF SCIENCES OF THE USA Data deposition: The sequences reported in this paper have been 0027-8424y97y945716-6$2.00y0 reported in the GenBank database (accession nos. U61077 and PNAS is available online at http:yywww.pnas.org. U93053– U93073). 5716 Downloaded by guest on September 28, 2021 Evolution: Hollar and Springer Proc. Natl. Acad. Sci. USA 94 (1997) 5717 (12). Sequence alignments were modified following secondary structure models (13–14). Regions where alignments were ambiguous were omitted from phylogenetic analyses. For 12S rRNA, we omitted the regions between 8 and 89, 10 and 109, 49 and 139, 17 and 189,189and 179,24andC9, 35 and 359,359 and 36 (except the last six bases), and 39P and 39P9[stem numbers follow Springer and Douzery (13)]; for tRNA valine, we omitted the dihydrouridine and ribothymidine loops. We also omitted sites with gaps. This resulted in 927 characters. Maximum likelihood, minimum evolution, and parsimony (uniform and differential weighting schemes) were used to estimate phylogenetic trees using the three microchiropterans as outgroups. These analyses, including topology-dependent permutation tail probability (T-PTP) tests (15), bootstrapping (16), and the Kishino–Hasegawa (17) test, were conducted with PAUP 4.0d49 and 4.0d52 for Power MacIntosh (18). Bootstrap and T-PTP tests included 500 replications except for the maximum-likelihood analysis with a gamma rate- distribution (100 replications). For the maximum likelihood FIG. 2. Diagrams of the superior surfaces of the tongues of (a) analyses, we used empirical base frequencies with full heuristic Macroglossus lagochilus,(b)Eonycteris spelaea, and (c) Cynopterus searches. The first analysis was based on the HKY85 (19) sphinx. Anterior filiform papillae are indicated as FP. Macroglossus model, which assumes a 2:1 transition:transversion ratio with and Eonycteris are macroglossines; Cynopterus is a cynopterine. Mod- equal rates among sites. The second analysis used a transi- ified after Andersen (1). tion:transversion ratio of 4.32 and a gamma distribution with recumbent coronoid process, and a lower mandibular condyle a shape parameter of 0.22. These parameters were estimated (Fig. 1 e and f). from the five equally most parsimonious trees following the A cladistic reanalysis of Andersen’s morphological data recommendation of Swofford et al. (20). Minimum-evolution confirms many of Andersen’s conclusions, including macro- (21) trees were estimated using Jukes and Cantor (22), glossine monophyly and, with a few exceptions, the monophyly Kimura-2 parameter (23), and Tamura and Nei (24)-corrected of the Cynopterus and Epomophorus sections (5). The Rouset- distances with full heuristic searches. For each distance cor- tus section is paraphyletic based on this reanalysis. Single-copy rection, we used both equal rate and gamma-rate distribution (sc) DNA hybridization (6), restriction fragment length poly- options. For the parsimony analyses, we used full heuristic morphism analysis (7), and an evaluation of female reproduc- searches with 10 random input orders. Initially, all characters tive characters (8) all suggest that macroglossines are paraphyl- were weighted equally. We also downweighted stem sites by etic or polyphyletic with the implication that nectarivorous 0.62 to account for nonindependence (11). Finally, we re- tongue characters evolved independently in different lineages weighted characters proportional to their consistency indices or were reversed once evolved in a common ancestor. scDNA until a stable topology was obtained. Character-state trans- hybridization also provides evidence for an African clade that formations were either unweighted or weighted to account for includes Megaloglossus, Lissonycteris, and Epomophorus. the transition-bias in animal mtDNA; in the latter case trans- Andersen included each of these genera in a separate section. versions were weighted more heavily than transitions in both Here, we
Recommended publications
  • Cynopterus Minutus, Minute Fruit Bat
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2019: T136423A21985433 Scope: Global Language: English Cynopterus minutus, Minute Fruit Bat Assessment by: Ruedas, L. & Suyanto, A. View on www.iucnredlist.org Citation: Ruedas, L. & Suyanto, A. 2019. Cynopterus minutus. The IUCN Red List of Threatened Species 2019: e.T136423A21985433. https://dx.doi.org/10.2305/IUCN.UK.2019- 3.RLTS.T136423A21985433.en Copyright: © 2019 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Chiroptera Pteropodidae Taxon Name: Cynopterus minutus Miller, 1906 Common Name(s): • English: Minute Fruit Bat Taxonomic Notes: This may be a species complex.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Chiroptera: Pteropodidae)
    Chapter 6 Phylogenetic Relationships of Harpyionycterine Megabats (Chiroptera: Pteropodidae) NORBERTO P. GIANNINI1,2, FRANCISCA CUNHA ALMEIDA1,3, AND NANCY B. SIMMONS1 ABSTRACT After almost 70 years of stability following publication of Andersen’s (1912) monograph on the group, the systematics of megachiropteran bats (Chiroptera: Pteropodidae) was thrown into flux with the advent of molecular phylogenetics in the 1980s—a state where it has remained ever since. One particularly problematic group has been the Austromalayan Harpyionycterinae, currently thought to include Dobsonia and Harpyionycteris, and probably also Aproteles.Inthis contribution we revisit the systematics of harpyionycterines. We examine historical hypotheses of relationships including the suggestion by O. Thomas (1896) that the rousettine Boneia bidens may be related to Harpyionycteris, and report the results of a series of phylogenetic analyses based on new as well as previously published sequence data from the genes RAG1, RAG2, vWF, c-mos, cytb, 12S, tVal, 16S,andND2. Despite a striking lack of morphological synapomorphies, results of our combined analyses indicate that Boneia groups with Aproteles, Dobsonia, and Harpyionycteris in a well-supported, expanded Harpyionycterinae. While monophyly of this group is well supported, topological changes within this clade across analyses of different data partitions indicate conflicting phylogenetic signals in the mitochondrial partition. The position of the harpyionycterine clade within the megachiropteran tree remains somewhat uncertain. Nevertheless, biogeographic patterns (vicariance-dispersal events) within Harpyionycterinae appear clear and can be directly linked to major biogeographic boundaries of the Austromalayan region. The new phylogeny of Harpionycterinae also provides a new framework for interpreting aspects of dental evolution in pteropodids (e.g., reduction in the incisor dentition) and allows prediction of roosting habits for Harpyionycteris, whose habits are unknown.
    [Show full text]
  • Figs1 ML Tree.Pdf
    100 Megaderma lyra Rhinopoma hardwickei 71 100 Rhinolophus creaghi 100 Rhinolophus ferrumequinum 100 Hipposideros armiger Hipposideros commersoni 99 Megaerops ecaudatus 85 Megaerops niphanae 100 Megaerops kusnotoi 100 Cynopterus sphinx 98 Cynopterus horsfieldii 69 Cynopterus brachyotis 94 50 Ptenochirus minor 86 Ptenochirus wetmorei Ptenochirus jagori Dyacopterus spadiceus 99 Sphaerias blanfordi 99 97 Balionycteris maculata 100 Aethalops alecto 99 Aethalops aequalis Thoopterus nigrescens 97 Alionycteris paucidentata 33 99 Haplonycteris fischeri 29 Otopteropus cartilagonodus Latidens salimalii 43 88 Penthetor lucasi Chironax melanocephalus 90 Syconycteris australis 100 Macroglossus minimus 34 Macroglossus sobrinus 92 Boneia bidens 100 Harpyionycteris whiteheadi 69 Harpyionycteris celebensis Aproteles bulmerae 51 Dobsonia minor 100 100 80 Dobsonia inermis Dobsonia praedatrix 99 96 14 Dobsonia viridis Dobsonia peronii 47 Dobsonia pannietensis 56 Dobsonia moluccensis 29 Dobsonia anderseni 100 Scotonycteris zenkeri 100 Casinycteris ophiodon 87 Casinycteris campomaanensis Casinycteris argynnis 99 100 Eonycteris spelaea 100 Eonycteris major Eonycteris robusta 100 100 Rousettus amplexicaudatus 94 Rousettus spinalatus 99 Rousettus leschenaultii 100 Rousettus aegyptiacus 77 Rousettus madagascariensis 87 Rousettus obliviosus Stenonycteris lanosus 100 Megaloglossus woermanni 100 91 Megaloglossus azagnyi 22 Myonycteris angolensis 100 87 Myonycteris torquata 61 Myonycteris brachycephala 33 41 Myonycteris leptodon Myonycteris relicta 68 Plerotes anchietae
    [Show full text]
  • Bat Count 2003
    BAT COUNT 2003 Working to promote the long term, sustainable conservation of globally threatened flying foxes in the Philippines, by developing baseline population information, increasing public awareness, and training students and protected area managers in field monitoring techniques. 1 A Terminal Report Submitted by Tammy Mildenstein1, Apolinario B. Cariño2, and Samuel Stier1 1Fish and Wildlife Biology, University of Montana, USA 2Silliman University and Mt. Talinis – Twin Lakes Federation of People’s Organizations, Diputado Extension, Sibulan, Negros Oriental, Philippines Photo by: Juan Pablo Moreiras 2 EXECUTIVE SUMMARY Large flying foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to deforestation, unregulated hunting, and little conservation commitment from local governments. Despite the fact they are globally endangered and play essential ecological roles in forest regeneration as seed dispersers and pollinators, there have been only a few studies on these bats that provide information useful to their conservation management. Our project aims to promote the conservation of large flying foxes in the Philippines by providing protected area managers with the training and the baseline information necessary to design and implement a long-term management plan for flying foxes. We focused our efforts on the globally endangered Philippine endemics, Acerodon jubatus and Acerodon leucotis, and the bats that commonly roost with them, Pteropus hypomelanus, P. vampyrus lanensis, and P. pumilus which are thought to be declining in the Philippines. Local participation is an integral part of our project. We conducted the first national training workshop on flying fox population counts and conservation at the Subic Bay area.
    [Show full text]
  • Final Report on the Project
    BP Conservation Programme (CLP) 2005 PROJECT NO. 101405 - BRONZE AWARD WINNER ECOLOGY, DISTRIBUTION, STATUS AND PROTECTION OF THREE CONGOLESE FRUIT BATS FINAL REPORT Patrick KIPALU Team Leader Observatoire Congolais pour la Protection de l’Environnement OCPE – ong Kinshasa – Democratic Republic of the Congo E-mail: [email protected] APRIL 2009 1 Table of Content Acknowledgements…………………………………………………………………. p3 I. Project Summary……………………………………………………………….. p4 II. Introduction…………………………………………………………………… p4-p7 III. Materials and Methods ……………………………………………………….. p7-p10 IV. Results per Study Site…………………………………………………………. p10-p15 1. Pointe-Noire ………………………………………………………….. p10-p12 2. Mayumbe Forest /Luki Reserve……………………………………….. p12-p13 3. Zongo Forest…………………………………………………………... p14 4. Mbanza-Ngungu ………………………………………………………. P15 V. General Results ………………………………………………………………p15-p16 VI. Discussions……………………………………………………………………p17-18 VII. Conclusion and Recommendations……………………………………….p 18-p19 VIII. Bibliography………………………………………………………………p20-p21 Acknowledgements 2 The OCPE (Observatoire Congolais pour la Protection de l’Environnement) project team would like to start by expressing our gratefulness and saying thank you to the BP Conservation Program, which has funded the execution of this project. The OCPE also thanks the Van Tienhoven Foundation which provided a further financial support. Without these organisations, execution of the project would not have been possible. We would like to thank specially the BPCP “dream team”: Marianne D. Carter, Robyn Dalzen and our regretted Kate Stoke for their time, advices, expertise and care, which helped us to complete this work, Our special gratitude goes to Dr. Wim Bergmans, who was the hero behind the scene from the conception to the execution of the research work. Without his expertise, advices and network it would had been difficult for the project team to produce any result from this project.
    [Show full text]
  • Species-Edition-Melanesian-Geo.Pdf
    Nature Melanesian www.melanesiangeo.com Geo Tranquility 6 14 18 24 34 66 72 74 82 6 Herping the final frontier 42 Seahabitats and dugongs in the Lau Lagoon 10 Community-based response to protecting biodiversity in East 46 Herping the sunset islands Kwaio, Solomon Islands 50 Freshwater secrets Ocean 14 Leatherback turtle community monitoring 54 Freshwater hidden treasures 18 Monkey-faced bats and flying foxes 58 Choiseul Island: A biogeographic in the Western Solomon Islands stepping-stone for reptiles and amphibians of the Solomon Islands 22 The diversity and resilience of flying foxes to logging 64 Conservation Development 24 Feasibility studies for conserving 66 Chasing clouds Santa Cruz Ground-dove 72 Tetepare’s turtle rodeo and their 26 Network Building: Building a conservation effort network to meet local and national development aspirations in 74 Secrets of Tetepare Culture Western Province 76 Understanding plant & kastom 28 Local rangers undergo legal knowledge on Tetepare training 78 Grassroots approach to Marine 30 Propagation techniques for Tubi Management 34 Phantoms of the forest 82 Conservation in Solomon Islands: acts without actions 38 Choiseul Island: Protecting Mt Cover page The newly discovered Vangunu Maetambe to Kolombangara River Island endemic rat, Uromys vika. Image watershed credit: Velizar Simeonovski, Field Museum. wildernesssolomons.com WWW.MELANESIANGEO.COM | 3 Melanesian EDITORS NOTE Geo PRODUCTION TEAM Government Of Founder/Editor: Patrick Pikacha of the priority species listed in the Critical Ecosystem [email protected] Solomon Islands Hails Partnership Fund’s investment strategy for the East Assistant editor: Tamara Osborne Melanesian Islands. [email protected] Barana Community The Critical Ecosystem Partnership Fund (CEPF) Contributing editor: David Boseto [email protected] is designed to safeguard Earth’s most biologically rich Prepress layout: Patrick Pikacha Nature Park Initiative and threatened regions, known as biodiversity hotspots.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Bat Coronaviruses and Experimental Infection of Bats, the Philippines Shumpei Watanabe, Joseph S
    Bat Coronaviruses and Experimental Infection of Bats, the Philippines Shumpei Watanabe, Joseph S. Masangkay, Noriyo Nagata, Shigeru Morikawa, Tetsuya Mizutani, Shuetsu Fukushi, Phillip Alviola, Tsutomu Omatsu, Naoya Ueda, Koichiro Iha, Satoshi Taniguchi, Hikaru Fujii, Shumpei Tsuda, Maiko Endoh, Kentaro Kato, Yukinobu Tohya, Shigeru Kyuwa, Yasuhiro Yoshikawa, and Hiroomi Akashi Fifty-two bats captured during July 2008 in the Philip- voirs for SARS-CoV. These survey fi ndings suggested that pines were tested by reverse transcription–PCR to detect palm civets and raccoon dogs are an intermediate host of, bat coronavirus (CoV) RNA. The overall prevalence of vi- but not a primary reservoir for, SARS-CoV because of the rus RNA was 55.8%. We found 2 groups of sequences that low prevalence of SARS-like CoVs in these animals (2). belonged to group 1 (genus Alphacoronavirus) and group Moreover, a large variety of novel CoVs in these surveys, 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis including bat SARS–like CoVs, were detected in many bat of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/ species in the People’s Republic of China and Hong Kong A515/2005 (95% nt sequence identity) and Bat-CoV/ Special Administrative Region (3–6). HKU9–1/China/2007 (83% identity), respectively. To propa- Phylogenetic analysis of bat CoVs and other known gate group 2 CoVs obtained from a lesser dog-faced fruit bat CoVs suggested that the progenitor of SARS-CoV and all (Cynopterus brachyotis), we administered intestine samples other CoVs in other animal hosts originated in bats (5,7).
    [Show full text]
  • Investigating the Role of Bats in Emerging Zoonoses
    12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.
    [Show full text]
  • CEPF Final Project Completion Report
    CEPF Final Project Completion Report Organization Legal Name: The University of Queensland Sustainable Management of Ngali Nut Trees and Project Title: Threatened Flying Foxes in the Solomon Islands Grant Number: 65978 CEPF Region: East Melanesian Islands 1 Empower local communities to protect and manage globally significant biodiversity at priority Strategic Direction: Key Biodiversity Areas under-served by current conservation efforts Grant Amount: $79,644.00 Project Dates: May 01, 2016 - June 30, 2018 Date of Report: August 30, 2018 Implementation Partners List each partner and explain how they were involved in the project Ecological Solutions Solomon Islands (ESSI): subgrant partners, staff member Cornelius Qaqara led studies of Pteralopex flanneryi and Pteralopex anceps on Choiseul Island. Staff members Piokera Holland and Ikuo Tigulu assisted with data collection for endangered flying-foxes on Makira, Isabel, and Kolombangara. Cornelius Qaqara alos assisted with data collection on Guadalcanal. Solomon Islands Ministry of Environment, Climate Change, Disaster Management and Meteorology: staff member Trevor Maeda provided assistance on Makira and advise on the Integrated Forest Management Project on Makira. Plans were forwarded to Agnetha Vave- Karemui for input and development. Solomon Islands Ministry of Forests and Research: staff member Myknee Sirikolo provided assistance on Makira and advise on the Integrated Forest Management Project on Makira. Lubee Bat Conservancy: provided additional funding for data collection on endangered monkey- faced bats Solomon Islands Community Conservation Partnership (SICCP): Edmond Bate'e collaborated with SICCP to conduct research into ngali nut management in the Western Province. Solomon Islands National University (SINU): environmental studies student Abraham Qusa volunteered on Makira island to learn new skills in field studies of the environment.
    [Show full text]
  • Form, Function, and Evolution in Skulls and Teeth of Bats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of May 1998 Form, Function, and Evolution in Skulls and Teeth of Bats Patricia W. Freeman University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons Freeman, Patricia W., "Form, Function, and Evolution in Skulls and Teeth of Bats" (1998). Papers in Natural Resources. 9. https://digitalcommons.unl.edu/natrespapers/9 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 9 Form, Function, and Evolution in Skulls and Teeth of Bats PATRICIA W FREEMAN Bats provide a model system for tracking change from the stylar shelves and elongated skulls with larger brain vol- primitive mammalian tooth pattern to patterns indicating umes and external ears than their insectivorous relatives. As the more-derived food habits of carnivory, nectarivory, in terrestrial mammals, however, there is no clear distinc- frugivory, and sanguinivory. Whereas microchiropteran tion between insectivorous and carnivorous species (Savage bats show all these transitions, megachiropterans illustrate 1977; Freeman 1984). Microchiropteran nectarivores are an alternative pattern concerned only with frugivory and also on a continuum with insectivores but are characteris- nectarivory. In rnicrochiropterans, it is likely that carnivory tically long-snouted with large canines and diminutive post- nectarivory, frugivory, and sanguinivory are all derived canine teeth (Freeman 1995).
    [Show full text]