A Survey of the Fish Fauna of the Roper River Near Jude's Crossing in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sound Production by a Recoiling System in the Pempheridae and Terapontidae
JOURNAL OF MORPHOLOGY 00:00–00 (2016) Sound Production by a Recoiling System in the Pempheridae and Terapontidae Eric Parmentier,1* Michael L. Fine,2 and Hin-Kiu Mok3,4 1Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH-RC, Institut de Chimie, Bat.^ B6c, Universitede Lie`ge, Lie`ge, B-4000, Belgium 2Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284-2012 3Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan 4National Museum of Marine Biology and Aquarium, Checheng, Pingtung, 944, Taiwan ABSTRACT Sound-producing mechanisms in fishes several hundred Hz (Parmentier and Fine, 2016). are extraordinarily diversified. We report here original Two main types of mechanism have been analyzed. mechanisms of three species from two families: the (1) Sound can be produced as a forced response: pempherid Pempheris oualensis, and the terapontids the muscle contraction rate or time for a twitch Terapon jarbua and Pelates quadrilineatus.Allsonic mechanismsarebuiltonthesamestructures.Theros- determines sound fundamental frequency (Sko- tral part of the swimbladder is connected to a pair of glund, 1961; Connaughton, 2004; Fine et al., 2001; large sonic muscles from the head whereas the poste- Onuki and Somiya, 2004; Parmentier et al., 2011, rior part is fused with bony widenings of vertebral 2014). In various catfish species (Boyle et al., bodies. Two bladder regions are separated by a stretch- 2014, 2015), the sonic muscles originate on the able fenestra that allows forward extension of the ante- skull and insert on a bony modified rib (Mullerian€ rior bladder during muscle contraction. A recoiling ramus) that attaches to the swimbladder (Ladich apparatus runs between the inner face of the anterior and Bass, 1996). -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Common Lexical Semantics in Dalabon Ethnobiological Classification
This item is Chapter 15 of Language, land & song: Studies in honour of Luise Hercus Editors: Peter K. Austin, Harold Koch & Jane Simpson ISBN 978-0-728-60406-3 http://www.elpublishing.org/book/language-land-and-song Common lexical semantics in Dalabon ethnobiological classification Sarah Cutfield Cite this item: Sarah Cutfield (2016). Common lexical semantics in Dalabon ethnobiological classification. In Language, land & song: Studies in honour of Luise Hercus, edited by Peter K. Austin, Harold Koch & Jane Simpson. London: EL Publishing. pp. 209-227 Link to this item: http://www.elpublishing.org/PID/2015 __________________________________________________ This electronic version first published: March 2017 © 2016 Sarah Cutfield ______________________________________________________ EL Publishing Open access, peer-reviewed electronic and print journals, multimedia, and monographs on documentation and support of endangered languages, including theory and practice of language documentation, language description, sociolinguistics, language policy, and language revitalisation. For more EL Publishing items, see http://www.elpublishing.org 15 Common lexical semantics in Dalabon ethnobiological classification Sarah Cutfield School of Literature, Languages and Linguistics & The ARC Centre of Excellence for the Dynamics of Language, Australian National University 1. Introduction1 This paper is an analysis of the common lexical semantics in ethnobiological classification in Dalabon (Gunwinyguan, non-Pama-Nyungan), based on the intensive documentation in Bordulk et al. (2012), who cover 821 names for over 550 species, an unusually high number of named species for languages in Australia’s Top End (GW pers. com.). Dalabon shares many of the common formal and semantic features described for ethnoclassification in Australian languages. I present an overview and detailed exemplification of these phenomena in Dalabon, and highlight data which do not pattern according to common observations of ‘formal linguistic similarities indicate semiotic relationship’ in Australian languages. -
ABSTRACT Anchoviella Vaillanti
Volume 45(esp.):33‑40, 2014 REDESCRIPTION OF THE FRESHWATER ANCHOVY ANCHOVIELLA VAILLANTI (STEINDACHNER, 1908) (CLUPEIFORMES: ENGRAULIDAE) WITH NOTES ON THE DISTRIBUTION OF ESTUARINE CONGENERS IN THE RIO SÃO FRANCISCO BASIN, BRAZIL 1,2 MARINA VIANNA LOEB 1,3 JOSÉ LIMA DE FIGUEIREDO ABSTRACT Anchoviella vaillanti (Steindachner, 1908) was described based on few specimens from the middle Rio São Francisco; however, several specimens of the species have been collected in recent decades. The range of morphological variation of A. vaillanti could thus be reassessed based on a larger number of specimens currently available in fish collections, and the species redescribed. Anchoviella vaillanti can be recognized among freshwater congeners by the relative position of the pelvic, dorsal and anal fins. Records of the species in ichthyological collections are restricted to the upper and middle portions of the Rio São Francisco basin, but the species might also occur in the lower Rio São Francisco. Comments on the distribution of the marine species of Anchoviella from the lower Rio São Francisco basin and an identification key including those species and A. vaillanti are provided. Key-Words: Ichthyology; Taxonomy; Neotropical; Rio São Francisco basin; Anchovy. INTRODUCTION coast and can extend distances up the lower portions of rivers. In a recent study of the Brazilian freshwater Anchoviella is one of the most species-rich gen- species of Anchoviella, Loeb (2009) recognized seven era of the Engraulidae, with about 17 valid marine, different Amazonian species (two of them still unde- estuarine and freshwater species distributed in South scribed) and one single species from the Rio São Fran- American rivers and along the Atlantic and Pacific cisco basin, Anchoviella vaillanti (Steindachner, 1908). -
Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus .................................................................................................. -
AU-COM2017-349 Date of Issue 27 April 2017 Date of Expiry 30 December 2019
Environment Protection and Biodiversity Conservation Regulations 2000 Access to Biological Resources in a Commonwealth Area for Non-Commercial Purposes Permit number AU-COM2017-349 Date of issue 27 April 2017 Date of expiry 30 December 2019 Name and organisation of person to Dr Alison King and Dion Wedd whom the permit is issued: Charles Darwin University c/-RIEL, S of Environment, Charles Darwin University, Ellengowan Drive, Brinkin NT 0909 Provision of Regulations for which permit issued 8A.06 Collection of biological material from Kakadu National Park – Charles Darwin University Access is permitted to the following location: Mary River, Kakadu National Park to collect the following biological resources for non-commercial purposes: a maximum of the following: Common Name Scientific Name Amount/ Volume Longfin glassfish Ambassis interrupta 20 Macleay's glassfish Ambassis macleayi 20 Vachell’s Glassfish Ambassis vachellii 20 Northwest glassfish Ambassis sp. 50 Barred Grunter Amniataba percoides 150 short fin eel Anguilla bicolor 20 Toothless catfish Anodontiglanis dahli 20 Snub-nosed garfish Arrhamphus sclerolepis 20 Freshwater sole Brachirus selheimi 20 Crimson-tipped gudgeon Butis butis 20 bull shark Carcharhinus leucas 20 smallmouth catfish Cinetodus frogatti 20 Fly-specked hardyhead Craterocephalus stercusmuscarum 20 Strawman hardyhead Craterocephalus stramineus 200 Anchovy sp. Engraulidae 20 silver biddy Gerres filamentosus 20 Mouth almighty Glossamia aprion 50 Permit Number: AU-COM2017-349 Page 1 of 4 Environment Protection and -
Fishes of the King Edward River in the Kimberley Region, Western Australia
Records of the Western Australian Museum 25: 351–368 (2010). Fishes of the King Edward River in the Kimberley region, Western Australia David L. Morgan Freshwater Fish Group, Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia 6150, Australia. E-mail: [email protected] Abstract – The King Edward River, in the far north of the Kimberley region of Western Australia drains approximately 10,000 km2 and discharges into the Timor Sea near the town of Kalumburu. This study represents an ichthyological survey of the river’s freshwaters and revealed that the number of freshwater fishes of the King Edward River is higher than has previously been recorded for a Western Australian river. Twenty-six strictly freshwater fish species were recorded, which is three species higher than the much larger Fitzroy River in the southern Kimberley. The study also identified a number of range extensions, including Butler’s Grunter and Shovel-nosed Catfish to the west, and the Slender Gudgeon to the north and east. A possibly undescribed species of glassfish, that differs morphologically from described species in arrangement of head spines, fin rays, as well as relative body measurements, is reported. A considerable proportion of Jenkins’ Grunter, which is widespread throughout the system but essentially restricted to main channel sites, had ‘blubber-lips’. There were significant differences in the prevailing fish fauna of the different reaches of the King Edward River system. Thus fish associations in the upper King Edward River main channel were significantly different to those in the tributaries and the main channel of the Carson River. -
A New Freshwater Catfish (Pisces: Ariidae) from Northern Australia
Rec. West. Aust. Mus. 1988,14(1): 73-89 A new freshwater catfish (Pisces: Ariidae) from northern Australia PatriciaJ. Kailola* and Bryan E. Pierce* Abstract A new species of fork-tailed catfish is described on the basis of 31 specimens collected in northern Australia between the Fitzroy River (Western Australia) and the Mitchell River (Queensland). Arius midgleyi sp. novo grows to at least 1.3 m TL and is distinguished from other Australo-Papuan ariids by a combination of charac ters including snout shape, barbel length, eye size, tooth arrangement and gill raker number and position. Comparison is made with other ariid species occurring in northern Australian rivers, including the morphologically similar A. leptaspis (Bleeker). Introduction The Timor Sea and Gulf of Carpentaria drainage systems (Lake 1971) approx imately represent the Leichhardtian zoogeographic region of Whitley (1947). The rainfall pattern in this region is dominated by the wet monsoon (occurring within the period November to April). Most rivers here traverse a flat coastal plain about 15 km wide before reaching the sea (Lake 1971). These rivers commonly possess wide flood plains and low gradients, often contracting to a chain of waterholes during the dry season; some (Gregory River; Fitzroy to Daly Rivers) have reaches of rapids or very deep gorges. The average annual discharge from this region is 69000 billion litres (Lake 1971), most of it occurring during the wet season. Five of Australia's 18 species of fork-tailed catfishes (Ariidae) are common in this northern region, yet were overlooked by Whitley (1947) and Iredale and Whitley (1938). The members of this family, which is distributed circumglobally in the tropics and subtropics, may inhabit the sea, rivers within tidal influence, or fresh waters. -
Lakes Argyle and Kununurra Wetlands Ramsar Site Ecological Character Description
Lakes Argyle and Kununurra Ramsar Site Ecological Character Description Citation: Hale, J. and Morgan, D., 2010, Ecological Character Description for the Lakes Argyle and Kununurra Ramsar Site. Report to the Department of Sustainability, Environment, Water, Population and Communities, Canberra. Acknowledgements: Danny Rogers, Australasian Waders Studies Group (expert advice) Halina Kobryn, Murdoch University (mapping and GIS) The steering committee was comprised of representatives of the following organisations: • Department of the Environment, Water, Heritage and the Arts • WA Department of Environment and Conservation (Kununurra) • WA Department of Water (Kununurra) • Shire of Wyndham East Kimberley Introductory Notes This Ecological Character Description (ECD Publication) has been prepared in accordance with the National Framework and Guidance for Describing the Ecological Character of Australia’s Ramsar Wetlands (National Framework) (Department of the Environment, Water, Heritage and the Arts, 2008). The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) prohibits actions that are likely to have a significant impact on the ecological character of a Ramsar wetland unless the Commonwealth Environment Minister has approved the taking of the action, or some other provision in the EPBC Act allows the action to be taken. The information in this ECD Publication does not indicate any commitment to a particular course of action, policy position or decision. Further, it does not provide assessment of any particular action within the meaning of the Environment Protection and Biodiversity Conservation Act 1999 (Cth), nor replace the role of the Minister or his delegate in making an informed decision to approve an action. The Water Act 2007 requires that in preparing the [Murray-Darling] Basin Plan, the Murray Darling Basin Authority (MDBA) must take into account Ecological Character Descriptions of declared Ramsar wetlands prepared in accordance with the National Framework. -
IR 425 Sampling and Design Options for Monitoring Freshwater Fish
internal report 425 Sampling and design options for monitoring freshwater fish: Potential strategies for the Darwin Harbour catchment B Pidgeon June 2003 supervising scientist Sampling and design options for monitoring freshwater fish: potential strategies for the Darwin Harbour catchment Bob Pidgeon Environmental Research Institute of the Supervising Scientist Darwin Supervising Scientist This talk was presented to the Department of Infrastructure, Planning and Environment, Water Monitoring Branch, in May 2003. It deals with the options for monitoring of freshwater fish in the Darwin Harbour catchment as part of a comprehensive environmental management program for Darwin Harbour being planned by DIPE. It accompanies a report prepared as part of a consultancy by the Environmental Research Institute of the Supervising Scientist to the Department of Infrastructure, Planning and Environment, June 2003. 1 Background • Plans by DIPE to begin monitoring freshwater fish as part of a comprehensive environmental management strategies for Darwin Harbour catchment • Why monitor fish? – Important role in determining structure of aquatic ecosystems – Sensitive to pollution, habitat change and altered hydrology – useful indicators of ecosystem health – High profile of conservation of biodiversity and food and recreation values – Concerns about contamination and human health Supervising Scientist Freshwater fish monitoring in the NT • Not widespread • Most extensive studies are in relation to uranium mining: – in Magela Creek & South Alligator River -Ranger mine; – Finnis River - Rum Jungle mine • Taxonomy is now well known and basic biology and ecology known for many species – good basis for use in monitoring and assessment* • Fisheries research focused on barramundi *The research on fish ecology and reproductive biology by the Office of the Supervising Scientist in 1978-79 (Bishop et al 1986, 1990 & 2002) provides a good basis for the evaluation of impacts on freshwater fish that might be detected in monitoring programs. -
Fishes of the King Edward and Carson Rivers with Their Belaa and Ngarinyin Names
Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names By David Morgan, Dolores Cheinmora Agnes Charles, Pansy Nulgit & Kimberley Language Resource Centre Freshwater Fish Group CENTRE FOR FISH & FISHERIES RESEARCH Kimberley Language Resource Centre Milyengki Carson Pool Dolores Cheinmora: Nyarrinjali, kaawi-lawu yarn’ nyerreingkana, Milyengki-ngûndalu. Waj’ nyerreingkana, kaawi-ku, kawii amûrike omûrung, yilarra a-mûrike omûrung. Agnes Charles: We are here at Milyengki looking for fish. He got one barramundi, a small one. Yilarra is the barramundi’s name. Dolores Cheinmora: Wardi-di kala’ angbûnkû naa? Agnes Charles: Can you see the fish, what sort of fish is that? Dolores Cheinmora: Anja kûkûridingei, Kalamburru-ngûndalu. Agnes Charles: This fish, the Barred Grunter, lives in the Kalumburu area. Title: Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names Authors: D. Morgan1 D. Cheinmora2, A. Charles2, Pansy Nulgit3 & Kimberley Language Resource Centre4 1Centre for Fish & Fisheries Research, Murdoch University, South St Murdoch WA 6150 2Kalumburu Aboriginal Corporation 3Kupungari Aboriginal Corporation 4Siobhan Casson, Margaret Sefton, Patsy Bedford, June Oscar, Vicki Butters - Kimberley Language Resource Centre, Halls Creek, PMB 11, Halls Creek WA 6770 Project funded by: Land & Water Australia Photographs on front cover: Lower King Edward River Long-nose Grunter (inset). July 2006 Land & Water Australia Project No. UMU22 Fishes of the King Edward River - Centre for Fish & Fisheries Research, Murdoch University / Kimberley Language Resource Centre 2 Acknowledgements Most importantly we would like to thank the people of the Kimberley, particularly the Traditional Owners at Kalumburu and Prap Prap. This project would not have been possible without the financial support of Land & Water Australia. -
Rainbowfishes (Melanotaenia: Melanotaeniidae) of the Aru Islands, Indonesia with Descriptions of Five New Species and Redescription of M
aqua, International Journal of Ichthyology Rainbowfishes (Melanotaenia: Melanotaeniidae) of the Aru Islands, Indonesia with descriptions of five new species and redescription of M. patoti Weber and M. senckenbergianus Weber Gerald R. Allen1, Renny K. Hadiaty2, Peter J. Unmack3 and Mark V. Erdmann4,5 1) Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2) Museum Zoologicum Bogoriense (MZB), Division of Zoology, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Jalan Raya Bogor Km 46, Cibinong 16911, Indonesia. 3) Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra, ACT 2601, Australia. 4) Conservation International Marine Program, Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235, Bali, Indonesia. 5) California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, USA. Received: 02 November 2014 – Accepted: 08 March 2015 Abstract (14.1-75.6 mm SL) specimens respectively, collected at The Aru Archipelago is a relict of the former land bridge Kola, Kobroor, and Wokam islands. They comprise a connecting Australia and New Guinea and its freshwater close-knit group allied to the “Goldiei” group (along with Melanotaenia strongly reflect this past connection. Sea lev- M. senckenbergianus), but are differentiated on the basis of el changes over the past 2-3 million years have apparently live colour patterns and various genetic, morphometric, provided sufficient isolation for the radiation of a mini- and meristic features. species flock consisting of at least seven species. Melanotae- nia patoti and M. senckenbergianus were described from the Zusammenfassung islands by Weber in the early 1900s, but subsequently con- Das Aru-Archipel ist ein Überbleibsel der früheren Land- sidered as junior synonyms of the New Guinea mainland brücke zwischen Australien und Neuguinea, die Süßwasser- species M.