Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny

Total Page:16

File Type:pdf, Size:1020Kb

Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny ResearchOnline@JCU This file is part of the following reference: Davis, Aaron Marshall (2012) Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/27673/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/27673/ Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny PhD thesis submitted by Aaron Marshall Davis BSc, MAppSci, James Cook University in August 2012 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University 1 2 Statement on the contribution of others Supervision was provided by Professor Richard Pearson (James Cook University) and Dr Brad Pusey (Griffith University). This thesis also includes some collaborative work. While undertaking this collaboration I was responsible for project conceptualisation, laboratory and data analysis and synthesis of results into a publishable format. Dr Peter Unmack provided the raw phylogenetic trees analysed in Chapters 6 and 7. Peter Unmack, Tim Jardine, David Morgan, Damien Burrows, Colton Perna, Melanie Blanchette and Dean Thorburn all provided a range of editorial advice, specimen provision, technical instruction and contributed to publications associated with this thesis. Greg Nelson-White, Pia Harkness and Adella Edwards helped compile maps. The project was funded by Internal Research Allocation and Graduate Research Scheme grants from the School of Marine and Tropical Biology, James Cook University (JCU). In-kind field collection was also funded in part by the Australian Government’s Natural Heritage Trust National Competitive Component and Land and Water Australia. In-kind support was also provided by TropWater (formerly Australian Centre for Tropical Freshwater Research) at JCU in the form of field equipment and sample collection. 3 4 Acknowledgments I would initially like to thank my supervisors Brad Pusey and Richard Pearson for their invaluable guidance, patience and support over the course of this project. Your capacity for insights and fixes to seemingly intractable challenges was always much appreciated. I am also immensely grateful to David Morgan and Colton Perna for providing many of the fish specimens so integral to this study, as well as useful discussion. Several other collaborators on various thesis topics provided tremendous and prompt support, encouragement and advice: Melanie Blanchette for her work ethic, organizational ability and eye for detail in both the field and laboratory; Tim Jardine for his expertise and enthusiasm about all things stable isotope- related; and Peter Unmack, without whose phylogenetic contributions this thesis would undoubtedly have suffered considerably. An array of people, including Damien Burrows, Michael Pusey, Mark Kennard, Dean Thorburn, Adam Kerezsy, Matthew Knott, Jason Shaffer, Ian Dixon, Mark Adams, Gerry Allen, Jon Armbruster, Michael Baltzly, Cindy Bessey, Joshua Brown, Chris Burridge, Stephen Caldwell, Adam Fletcher, David Galeotti, Chris Hallett, Michael Hammer, Jeff Johnson, Alfred Ko’ou, Andrew McDougall, Masaki Miya, Sue Morrison, Tim Page, Ikising Petasi, Ross Smith and the Hydrobiology team, and the staff from ERISS and Northern Territory Fisheries, are also all thanked for their efforts in helping to collect and/or providing specimens. Kent Hortle and Andrew Storey are thanked for provision of data and advice regarding Papuan species. Additional samples for genetic work were provided by the Australian, Northern Territory, Queensland, South Australian, Western Australian, and University of Kansas museums and by the Smithsonian National Museum of Natural History; thanks to their staff and donors for providing samples. I am grateful to Stephen Lewis, a great sounding board regarding manuscript submission, for his endless patience and effort in helping me compensate for my poor graphical abilities. I owe a debt of gratitude to both the pioneering and current fish and evolutionary biologists whose work has been a constant source of inspiration, especially Richard Vari, whose seminal work on the terapontids was an invaluable resource throughout my thesis. Thanks are also warranted to the numerous journal editors, anonymous reviewers and thesis examiners who revised the various data chapters/manuscripts making up this thesis. Their advice and critiques 5 greatly improved the quality of my research, and provided an invaluable learning experience with regard to better analyzing, interpreting and presenting of my data. Finally, I am forever indebted to my parents Steve and Kris at so many levels: for always encouraging and fostering an interest in the natural world; for their unwavering sacrifice and support towards my education; and for their invaluable help and company (as well as sustenance) in the field. Who would have thought all those childhood days spent in the backyard creek catching spangled perch (L. unicolor) with grasshoppers on bent pins would lead to this? Finally thank you so much to my own little family – Birony, Brooke, Sophie and Hayley. Thank you for the support, forbearance and comedic relief over many years, without which I could never have completed this work. 6 Abstract Ecological processes, such as major habitat and dietary diversification, are considered to play a major role in the adaptive radiation of many vertebrates. While the Australian continent’s long- term biogeographic isolation provides an ideal and relatively independent testing ground for associated hypotheses, ecological processes have received little attention in the context of the radiation of Australia’s freshwater fishes. This thesis therefore examines the role of dietary habits, habitat affiliation and ontogeny in one of Australia’s largest families of freshwater fishes, the terapontid grunters (Terapontidae), in the context of evolutionary theory. Stomach-content analyses (SCA) of 22 north-Australian terapontid species identified distinct ontogenetic dietary shifts in all species for which sufficient data were available, with many species passing through several discrete trophic categories during their life histories. Carnivory was prevalent in juvenile terapontids, with diets dominated by aquatic insect larvae and microcrustacea, followed by divergence into a broad spectrum of feeding groups comprising carnivory (including piscivory and lepidophagy), omnivory (including frugivory and consumption of allochthonous prey), specialized herbivory and detritivory in larger size classes. Stable isotope analyses (SIA) of fish tissues largely corroborated the size-related dietary shifts identified by SCA. The combination of SIA and SCA identified the important role of ontogenetic dietary shifts in the trophic ecology of terapontids in the Burdekin River. SIA was particularly useful in indicating that, for fish species with pronounced size-related dietary shifts, the basal carbon sources supporting those species can also change markedly with ontogeny. The ontogenetic dietary shifts revealed by both SIA and SCA were so profound that different size classes of certain species occupied different trophic as well as isotopic niches. Body size, and its relationship to allometric development of several morphological features, appears to be a significant constraint dictating the trophic habits of many terapontids at different life-history stages. Preliminary analyses identified the role of allometric growth (both positive and negative allometry) – in characters such as intestinal length, maxilla length and mouth width – in driving considerable ontogenetic divergence in interspecific morphological trajectories. Despite these complex associations between body size and growth of morphological variables, multivariate analyses showed that morphology has a significant relationship to diet, both within and between terapontid species, explaining ~50% of dietary 7 variation in the 22 studied species and their constituent ontogenetic trophic units. Many of the diet-morphology relationships evident in the terapontids parallel those documented in other fish assemblages around the globe: intestinal length and sub-terminal mouth orientation positively correlated with detritivory and consumption of aquatic algae; intestinal length negatively correlated with carnivory; and conical tooth shape, maxilla length, mouth width, head length and eye diameter all positively correlated with piscivory and prey size. The potential role of historical habitat transitions in the marked trophic diversification within the terapontids was investigated using a new molecular phylogeny (using mitochondrial and nuclear genes) incorporating 36 species. Ancestral habitat reconstruction indicated that ancestral terapontids were euryhaline, with a single transition to freshwater environments being ancestral to all contemporary Australasian freshwater species. Mapping of adult terapontid feeding modes on to the molecular phylogeny indicated that carnivorous dietary habits were displayed by ancestral terapontids, which subsequently diversified into a range of additional carnivorous, omnivorous, herbivorous and detritivorous diets following the invasion of fresh waters. The evolution
Recommended publications
  • Reef Fish Monitoring Te Tapuwae O Rongokako Marine Reserve
    Reef Fish Monitoring Te Tapuwae o Rongokako Marine Reserve Technical Support - Marine East Coast Hawke’s Bay Conservancy Debbie Freeman OCTOBER 2005 Published By Department of Conservation East Coast Hawkes Bay Conservancy PO Box 668 Gisborne 4040, New Zeland Cover: Banded wrasse Photo: I. Nilsson Title page: Koheru Photo: M. Blackwell Acknowledgments: Blue maomao Photo: J. Quirk © Copyright October 2005, New Zealand Department of Conservation ISSN 1175-026X ISBN 978-0-478-14143-6 (paperback) ISBN 978-0-478-14193-1 (Web pdf) Techincal Support Series Number: 25 In the interest of forest conservation, DOC Science Publishing supports paperless electronic publishing. When printing, recycled paper is used wherever possible. C ontents Abstract 4 Introduction 5 Methods 6 Results 10 Discussion 20 Fish fauna 20 Protection effects 21 Reserve age and design 21 Experimental design and monitoring methods 22 Illegal fishing 23 Environmental factors 24 Acknowledgements 24 References 25 Abstract Reef fish monitoring was undertaken within and surrounding Te Tapuwae o Rongokako Marine Reserve, on the North Island’s East Coast, between 2000 and 2004. The objective of the monitoring was to describe the reef fish communities and to establish whether populations within the marine reserve were demonstrating any changes in abundance or size that could be attributable to the removal of fishing pressure. The underwater visual census method was used to survey the four lo- cations (marine reserve and three non-reserve locations). It was found that all four locations were characterised by moderate densities of spot- ties, scarlet wrasse and reef-associated planktivores such as blue maomao, sweep and butterfly perch.
    [Show full text]
  • To Next File: Sfc260a.Pdf
    Appendix 1 FISH SPECIES IDENTIFIED FROM THE COASTAL EAST CAPE REGION Surveys of the East Cape Region (Bay of Plenty and East Coast) were conducted during 1992, 1993, and 1999 (see Tables 1, 2, and 4 for locality data), with additional records from the National Fish Collection. FAMILY, SPECIES, AND AUTHORITY COMMON NAME STATIONS Lamnidae Isurus oxyrinchus Rafinesque mako shark (P) E20o Squalidae Squalus mitsukurii Jordon & Snyder piked spurdog (D) W Dasyatidae Dasyatis brevicaudata (Hutton) shorttailed stingray E19o Myliobatidae eMyliobatis tenuicaudatus (Hector) eagle ray E03° Anguillidae Anguilla australis Richardson shortfin eel (F) W eAnguilla dieffenbachii Gray longfin eel (F) W Muraenidae Gymnothorax prasinus (Richardson) yellow moray E05o, E08° Ophichthyidae Scolecenchelys australis (MacLeay) shortfinned worm eel E01, E10, E11, E28, E29, E33, E48 Congridae Conger verreauxi Kaup southern conger eel E03, E07, E09, E12°, E13, E16, E18, E22o, E23o, E25o, E31, E33 Conger wilsoni (Bloch & Schneider) northern conger eel W; E05, E09, E12, E27 Conger sp. conger E01°, E31o Engraulidae Engraulis australis (White) anchovy (P) E Clupeidae Sardinops neopilchardus (Steindachner) pilchard (P) E Gonorynchidae Gonorynchus forsteri Ogilby sandfish (D) E Retropinnidae eRetropinna retropinna (Richardson) smelt (F) W; E Galaxiidae Galaxias maculatus (Jenyns) inanga (F) W; E Bythitidae eBidenichthys beeblebroxi Paulin grey brotula E01, E03, E08, E09, E10, E12, E18, E19, E21, E23, E27, E28, E29, E31, E33, E34 eBrosmodorsalis persicinus Paulin & Roberts pink brotula E02, E07, E10°, E18, E22, E29, E31, E33o eDermatopsis macrodon Ogilby fleshfish E08, E31 Moridae Austrophycis marginata (Günther) dwarf cod (D) E Continued next page > e = NZ endemic species. D = deepwater species (> 50 m depth); E = estuarine species; F = freshwater species; P = pelagic species; U = species of uncertain identity.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Status Review, Disease Risk Analysis and Conservation Action Plan for The
    Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW).
    [Show full text]
  • Wainwright-Et-Al.-2012.Pdf
    Copyedited by: ES MANUSCRIPT CATEGORY: Article Syst. Biol. 61(6):1001–1027, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys060 Advance Access publication on June 27, 2012 The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond ,∗ PETER C. WAINWRIGHT1 ,W.LEO SMITH2,SAMANTHA A. PRICE1,KEVIN L. TANG3,JOHN S. SPARKS4,LARA A. FERRY5, , KRISTEN L. KUHN6 7,RON I. EYTAN6, AND THOMAS J. NEAR6 1Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616; 2Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605; 3Department of Biology, University of Michigan-Flint, Flint, MI 48502; 4Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; 5Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069; 6Department of Ecology and Evolution, Peabody Museum of Natural History, Yale University, New Haven, CT 06520; and 7USDA-ARS, Beneficial Insects Introduction Research Unit, 501 South Chapel Street, Newark, DE 19713, USA; ∗ Correspondence to be sent to: Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 22 September 2011; reviews returned 30 November 2011; accepted 22 June 2012 Associate Editor: Luke Harmon Abstract.—The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes.
    [Show full text]
  • Native Fish Strategy
    MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin M. Hutchison, A. Butcher, J. Kirkwood, D. Mayer, K. Chilcott and S. Backhouse Queensland Department of Primary Industries and Fisheries Published by Murray-Darling Basin Commission Postal Address GPO Box 409, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 Email [email protected] Internet http://www.mdbc.gov.au For further information contact the Murray-Darling Basin Commission office on (02) 6279 0100 This report may be cited as: Hutchison, M, Butcher, A, Kirkwood, J, Mayer, D, Chikott, K and Backhouse, S. Mesoscale movements of small and medium-sized fish in the Murray-Darling Basin MDBC Publication No. 41/08 ISBN 978 1 921257 81 0 © Copyright Murray-Darling Basin Commission 2008 This work is copyright. Graphical and textual information in the work (with the exception of photographs and the MDBC logo) may be stored, retrieved and reproduced in whole or in part, provided the information is not sold or used for commercial benefit and is acknowledged. Such reproduction includes fair dealing for the purpose of private study, research, criticism or review as permitted under the Copyright Act 1968. Reproduction for other purposes is prohibited without prior permission of the Murray-Darling Basin Commission or the individual photographers and artists with whom copyright applies.
    [Show full text]
  • Fishes of the King Edward and Carson Rivers with Their Belaa and Ngarinyin Names
    Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names By David Morgan, Dolores Cheinmora Agnes Charles, Pansy Nulgit & Kimberley Language Resource Centre Freshwater Fish Group CENTRE FOR FISH & FISHERIES RESEARCH Kimberley Language Resource Centre Milyengki Carson Pool Dolores Cheinmora: Nyarrinjali, kaawi-lawu yarn’ nyerreingkana, Milyengki-ngûndalu. Waj’ nyerreingkana, kaawi-ku, kawii amûrike omûrung, yilarra a-mûrike omûrung. Agnes Charles: We are here at Milyengki looking for fish. He got one barramundi, a small one. Yilarra is the barramundi’s name. Dolores Cheinmora: Wardi-di kala’ angbûnkû naa? Agnes Charles: Can you see the fish, what sort of fish is that? Dolores Cheinmora: Anja kûkûridingei, Kalamburru-ngûndalu. Agnes Charles: This fish, the Barred Grunter, lives in the Kalumburu area. Title: Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names Authors: D. Morgan1 D. Cheinmora2, A. Charles2, Pansy Nulgit3 & Kimberley Language Resource Centre4 1Centre for Fish & Fisheries Research, Murdoch University, South St Murdoch WA 6150 2Kalumburu Aboriginal Corporation 3Kupungari Aboriginal Corporation 4Siobhan Casson, Margaret Sefton, Patsy Bedford, June Oscar, Vicki Butters - Kimberley Language Resource Centre, Halls Creek, PMB 11, Halls Creek WA 6770 Project funded by: Land & Water Australia Photographs on front cover: Lower King Edward River Long-nose Grunter (inset). July 2006 Land & Water Australia Project No. UMU22 Fishes of the King Edward River - Centre for Fish & Fisheries Research, Murdoch University / Kimberley Language Resource Centre 2 Acknowledgements Most importantly we would like to thank the people of the Kimberley, particularly the Traditional Owners at Kalumburu and Prap Prap. This project would not have been possible without the financial support of Land & Water Australia.
    [Show full text]
  • Teleostei: Kyphosidae)
    Pat M. Fidopiastis Æ Daniel J. Bezdek Michael H. Horn Æ Judith S. Kandel Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei: Kyphosidae) Abstract The zebraperch, Hermosilla azurea Jenkins and microbes that appears to assist in the breakdown of algal Evermann, a warm-temperate marine fish species with a polysaccharides in the herbivorous diet of the fish. strictly macroalgal diet, has a relatively long digestive tract with an enlarged hindgut and an associated blind caecum (HC). In zebraperch sampled off Santa Catalina Island, California (33°19¢42¢¢N; 118°18¢37¢¢W) in years Introduction 1995 through 2001, direct cell counts, gut epithelium assessment of bacterial attachment, and short-chain A diverse microbiota occurs in the digestive tracts of fatty acid (SCFA) analyses verified that the zebraperch numerous species of herbivorous fishes representing HC possesses a dense and morphologically diverse, fer­ several mainly tropical families (Clements 1991; Cle­ mentative microbiota. Bacterial cell counts and mor­ ments and Choat 1995; Mountfort et al. 2002). Among phological diversity were significantly higher in HC these fish families, the Kyphosidae comprises mostly contents compared to anterior gut regions, suggesting tropical species but also includes the zebraperch Her­ that microbial populations were growing along the mosilla azurea Jenkins and Evermann, a strictly herbiv­ digestive tract. Similarly, electron micrographs of the orous species that occurs in warm temperate waters of HC epithelium revealed attached microbes, further the northeastern Pacific (Sturm and Horn 2001). The supporting the possibility that these organisms consti­ high-nutrient assimilation efficiency of the zebraperch tute resident microbiota.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Systematic Taxonomy and Biogeography of Widespread
    Systematics and Biogeography of Three Widespread Australian Freshwater Fish Species. by Bernadette Mary Bostock B.Sc. (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University February 2014 i ABSTRACT The variation within populations of three widespread and little studied Australian freshwater fish species was investigated using molecular genetic techniques. The three species that form the focus of this study are Leiopotherapon unicolor, Nematalosa erebi and Neosilurus hyrtlii, commonly recognised as the three most widespread Australian freshwater fish species, all are found in most of the major Australian drainage basins with habitats ranging from clear running water to near stagnant pools. This combination of a wide distribution and tolerance of a wide range of ecological conditions means that these species are ideally suited for use in investigating phylogenetic structure within and amongst Australian drainage basins. Furthermore, the combination of increasing aridity of the Australian continent and its diverse freshwater habitats is likely to promote population differentiation within freshwater species through the restriction of dispersal opportunities and localised adaptation. A combination of allozyme and mtDNA sequence data were employed to test the null hypothesis that Leiopotherapon unicolor represents a single widespread species. Conventional approaches to the delineation and identification of species and populations using allozyme data and a lineage-based approach using mitochondrial 16S rRNA sequences were employed. Apart from addressing the specific question of cryptic speciation versus high colonisation potential in widespread inland fishes, the unique status of L. unicolor as both Australia’s most widespread inland fish and most common desert fish also makes this a useful species to test the generality of current biogeographic hypotheses relating to the regionalisation of the Australian freshwater fish fauna.
    [Show full text]
  • Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes
    Philippine Journal of Science 148 (S1): 251-261, Special Issue on Genomics ISSN 0031 - 7683 Date Received: 18 Mar 2019 Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes Reynand Jay C. Canoy1,2,3, Ian Kendrich C. Fontanilla1,2, and Jonas P. Quilang1,2* 1Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101 Philippines 2Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101 Philippines 3Institute of Human Genetics, National Institutes of Health University of the Philippines Manila, 625 Pedro Gil St., Ermita, Manila 1000 Philippines The molecular phylogeny of the Philippine tigerperches is first described in this study. Eight species were analyzed: these include one endemic species (Leiopotherapon plumbeus); one introduced species (Bidyanus bidyanus); and six native species (Terapon jarbua, Terapon puta, Terapon theraps, Pelates quadrilineatus, Helotes sexlineatus, and Mesopristes cancellatus). Primers were designed to amplify and sequence the 12S rRNA (12S), cytochrome c oxidase subunit I (COI), and cytochrome b (CytB) genes. The concatenated 12S, COI, and CytB sequences (3529 bp) were used to construct the phylogeny of the tigerperches using Maximum Parsimony (MP), Neighbor Joining (NJ), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses. All four analyses supported the monophyly of tigerperches. Except for the MP tree, all phylogenetic trees showed that Terapon jarbua was the first to have diverged from the rest of the tigerperch species examined. The congeneric T. jarbua, T. puta and T. theraps did not group together, suggesting their non-monophyly. However, SH test on the unconstrained (actual observation) and constrained (the three congeneric species were forced to group together) NJ trees showed no significant difference (p = 0.55).
    [Show full text]
  • (Indonesian Journal of Ichthyology) Volume Nomor 20 3 Oktober 2020
    p ISSN 1693-0339 e ISSN 2579-8634 (Indonesian Journal of Ichthyology) Volume 20 Nomor 3 Oktober 2020 Jurnal Iktiologi Indonesia p ISSN 1693-0339 e ISSN 2579-8634 Terakreditasi berdasarkan Keputusan Direktur Jenderal Penguatan Riset dan Pengembangan, Kementerian Riset, Teknologi, dan Pendidikan Tinggi No. 10/E/KPT/2019 tentang Peringkat Akreditasi Jurnal Ilmiah Periode II Tahun 2019 tertanggal 4 April 2019 Peringkat 2, berlaku lima tahun mulai dari Volume 19, Nomor 1, tahun 2019 Volume 20 Nomor 3 Oktober 2020 Dewan Penyunting Ketua : M. Fadjar Rahardjo Anggota : Agus Nuryanto Achmad Zahid Angela Mariana Lusiastuti Charles P.H. Simanjuntak Djumanto Endi Setiadi Kartamihardja Haryono Kadarusman Lenny S. Syafei Lies Emmawati Hadie Sharifuddin bin Andy Omar Teguh Peristiwady Alamat Dewan Penyunting: Gd. Widyasatwaloka, Bidang Zoologi, Pusat Penelitian Biologi-LIPI Jln. Raya Jakarta-Bogor Km 46, Cibinong 16911 Laman: jurnal-iktiologi.org Laman: www.iktiologi-indonesia.org Surel: [email protected] Jurnal Iktiologi Indonesia (JII) adalah jurnal ilmiah yang diterbitkan oleh Masyarakat Iktiologi Indonesia (MII) tiga kali setahun pada bulan Februari, Juni, dan Oktober. JII menyajikan artikel lengkap hasil penelitian yang berkenaan dengan segala aspek kehidupan ikan (Pisces) di perairan tawar, payau, dan laut. Aspek yang dicakup antara lain biologi, fisiologi, taksonomi dan sistematika, genetika, dan ekologi, serta terapannya dalam bidang penangkapan, akuakultur, pengelolaan perikanan, dan konservasi. Ikan pirik, Lagusia micracanthus Bleeker, 1860 (Foto: Muhammad Nur) Percetakan: CV. Rajawali Corporation Prakata Jurnal Iktiologi Indonesia edisi akhir bobot dan faktor kondisi ikan pirik di daerah tahun 2020 berisikan 8 artikel. Artikel pertama aliran sungai Maros, Sulawesi Selatan. menguraikan tentang pengaruh madu terhadap Tiga artikel terkait dengan ikan budi daya kualitas sperma ikan botia yang ditulis oleh dipublikasikan pada edisi ini.
    [Show full text]