Royal Society of Chemistry 19 – 20 December 2016

Total Page:16

File Type:pdf, Size:1020Kb

Royal Society of Chemistry 19 – 20 December 2016 Royal Society of Chemistry Solid State Chemistry Group Christmas Meeting Holywell Park, Loughborough University 19th – 20th December 2016 with thanks to our Gold Sponsors: and our Silver Sponsor: 36th Solid State Chemistry Group Meeting, LOUGHBOROUGH UNIVERSITY 19 – 20 December 2016 Holywell Park: Stephenson Lecture Theatre Monday 19th December 2016: TIME SPEAKER TITLE 12:00 – 13:00 Registration/Lunch/Posters (Carvery Buffet) Chair Dr Pooja Panchmatia 13:00 – 13:05 Dr. Pooja Panchmatia Opening Remarks 13:05 – 14:00 Prof. Aron Walsh Light, Camera, Electrons: Ionisation Potentials of Solids (Imperial) 14:00 – 14:20 Jenny Heath Beyond Lithium? Atomic-Scale Insights into Polyanion Cathode (Bath) Materials for Na+ and Mg2+ Rechargeable Batteries 14:20 – 14:40 Neeraj Sharma Using in situ synchrotron X-ray diffraction to understand the Na (UNSW, Australia) insertion/extraction reactions in the Na3V2O2x(PO4)2F3-2x family 14:40 – 15:00 Zhe Liu A novel polymer-assisted LiBH4 composite material for reversible (Glasgow) hydrogen storage 15:00 – 15:20 Paul Brack Ball milling of ferrosilicon powders and their application in (Loughborough) hydrogen generation 15:20 – 15:50 Break/Posters (Severn Room) Chair Prof. Aron Walsh 15:50 – 16:10 Marco Amores (Glasgow) Fast microwave-assisted synthesis and lithium-ion diffusion studies of lithium stuffed garnets 16:10 – 16:30 Aoifa K. Lucid Force field derivation and modelling of LaGaO3 for solid oxide fuel (Trinity College Dublin) cell electrolytes 16:30 – 16:50 J. Felix Shin Perovskite composite cathodes for (Liverpool) intermediate temperature solid oxide fuel cells 16:50 – 17:10 Felicity Taylor Modelling Point Defects and Dopants in LaFeO3 for IT-SOFC (UCL) Applications 17:10 – 17:30 Ali Shehu Defect structure and ionic conductivity of Ytterbium-doped (QMUL) Neodymium pyrochlore oxides 17:30 – 18:05 SSCG AGM 18:05 – 19:15 Posters (Holywell Park – Babbage Exhibition Area) 19:30 Conference Dinner (Burleigh Court) Tuesday 20TH December 2016: TIME SPEAKER TITLE Chair Dr Richard Darton 09:00 – 09:05 Pooja Panchmatia Day 2 Opening Address 09:05 – 10:00 Prof. Matt Rosseinsky Design of Advanced Materials? (Liverpool) 10:00 – 10:20 Partha Jana Synthesis, Crystal Structure and Electronic Structure of the (IIT Kharagpur) Binary Phase Rh2Cd5 10:20 – 10:40 Sergio E. R. Hernandez Molecular dynamics simulations of bio-active phosphate-based (Cardiff) glass surfaces 10:40 – 11:00 Satyam Ladva Crystalline Carbon Nitride Films Deposited at Room (UCL) Temperature 11:00 – 11:30 Break Chair Prof. Matt Rosseinsky 11:30 – 11:50 Daniel Cook Synthesis, characterisation and photocatalytic activity of (Warwick) CoGa2O4 11:50 – 12:10 Ben Coles Structure and magnetic properties of oxychalcogenides (Kent) BaFe2Q2O (Q = S, Se) 12:10 – 12:30 Rachel Fletcher Elucidating framework aluminium distribution in catalytic zeolites (UCL) 12:30 – 12:50 Lee Burton DFT Analysis of the Effect of 2D Materials in Photovoltaic (TKIT-Yokohama) Devices 12:50 – 13:00 Closing remarks 13:00 onwards Lunch Dear delegates, We are delighted to welcome you to Loughborough and to the RSC Solid State Chemistry Group Christmas meeting 2016. We hope you enjoy the meeting. Dr Pooja Panchmatia (Loughborough), Dr Richard Darton (Keele), Dr Jamieson Christie (Loughborough), Dr Sandie Dann (Loughborough), Dr Rob Jackson (Keele) and Dr Caroline Kirk (Loughborough). Plenary Speakers We are delighted to welcome our plenary speakers for this meeting: Prof. Aron Walsh, Imperial College London Prof. Matthew Rosseinsky, University of Liverpool General Information The venue for the meeting is the Stephenson Lecture Theatre in the Sir Dennis Rooke Building (http://www.holywell-park.co.uk/), Holywell Park at Loughborough University. The poster session on the Monday evening will be held in the Babbage Exhibition Area of Holywell Park and poster boards will be available on a ‘first come, first served basis’ with no numbers allocated. We ask all presenters to please take down their posters at the end of the poster session and before the conference dinner. The conference dinner is included as part of the programme and will be held in Burleigh Court at 19:30. Wifi Wifi is available on the Loughborough campus through EDUROAM and you should be able to log in using your home institution details. Acknowledgments The organising committee would like to thank Claire Lowe and Manisha Mistry for all their help in arranging this meeting. Abstracts for Oral Presentations Plenary 1: Light, Camera, Electrons: Ionisation Potentials of Solids Aron Walsh Department of Materials, Imperial College London, UK The absolute energies of electrons in solids determine important chemical and physical processes; however, they are notoriously difficult to measure or calculate. I will present a brief history of the development of the topic over the past century, in particular, on the transition from phenomenological to first-principles theories. By quantifying the bulk and surface contributions to the binding energy of electrons in solids, it is possible to provide deep insights into applications that involve electron transfer. These include photo-catalysis, electrochemical energy storage, and solar cells, where there is high demand for the development of materials with enhanced performance. I will discuss recent examples from my research ranging from polymorphism in titanium dioxide[1,2] to the development of electroactive metal-organic frameworks[3-5]. 1. Scanlon, D. O. et al. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 12, 798 (2013). 2. Buckeridge, J. et al. Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination. Chem. Mater. 27, 3844 (2015). 3. Butler, K. T., Hendon, C. H. & Walsh, A. Electronic chemical potentials of porous metal-organic frameworks. J. Am. Chem. Soc. 136, 2703 (2014). 4. Nasalevich, M. et al. Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 6, 23676 (2016). 5. Walsh, A, Butler, K. T. & Hendon, C. H. Chemical principles for electroactive metal-organic frameworks, MRS Bulletin 41, 870 (2016) Beyond Lithium? Atomic-Scale Insights into Polyanion Cathode Materials for Na+ and Mg2+ Rechargeable Batteries Jennifer Heath, Cristina Tealdi, Hungru Chen, M. Saiful Islam [email protected] Department of Chemistry, University of Bath, Bath, BA1 7AY Polyanion compounds such as olivine-structured LiFePO4 have received considerable attention as potential cathode materials for lithium-ion batteries. Over recent years interest in rechargeable batteries that go ‘beyond lithium’ have grown. In particular, Na- ion batteries offer cheaper alternatives for grid storage, and Mg-ion batteries have higher energy densities as a result of the divalently charged Mg ion. We have studied two olivine-structured materials, NaFePO4 and MgFeSiO4. Computational techniques have been used to investigate their atomic-scale properties, [1] including strain effects and ion migration. It was found that applying biaxial strain in the ac direction to NaFePO4 increased the Na-ion diffusion and decreased the formation energy of ‘blocking’ anti-site 2+ defects. [2] The study of MgFeSiO4 predicts a Mg diffusion coefficient similar in magnitude to typical lithium diffusion coefficients for LiFePO4; such favourable diffusion is a desirable property for a Mg-ion cathode material. 1. M. S. Islam and C. A. J. Fisher, Chem. Soc. Rev., 2014, 43, 185. 2. C. Tealdi, J. Heath, M. S. Islam, J. Mater. Chem, 2016, 4, 6998. Using in situ synchrotron X-ray diffraction to understand the Na insertion/extraction reactions in the Na3V2O2x(PO4)2F3-2x family Neeraj Sharma1 1School of Chemistry, UNSW Australia, Sydney NSW 2052, Australia There is a continuous drive for the improvement of batteries to meet the demands of emerging applications. Sodium-ion batteries are considered an attractive alternative to lithium-ion batteries due to the perceived lower cost of the electrodes. In both lithium- and sodium-ion batteries a large proportion of their function arises from the electrodes, and these are in turn mediated by the atomic-scale perturbations or changes in the crystal structure during an electrochemical process (e.g. battery use). The larger sodium ion presents a significant structural challenge – how to reversibly insert/extract sodium from an electrode without major structural changes and the collapse of the structure? A method to understand battery function and improve their performance is to probe the crystal structure evolution in situ while an electrochemical process is occurring inside a battery. This information can lead to the design of electrodes that minimize structural changes during function resulting in a longer life battery. We use in situ X-ray diffraction to literally track the time-resolved evolution of sodium in electrode materials used in rechargeable sodium-ion batteries. With this knowledge we have been able to directly relate electrochemical properties such as capacity and differences in charge/discharge to the content and distribution of sodium in the electrode crystal structure. This presentation will focus on our work on the Na3V2O2x(PO4)2F3-2x cathode family, showing the relationships between sodium site occupancies, charge/discharge of the battery, history of the battery, the original value of x in the composition and the long term structural degradation products. Figure 1 below shows selected 2θ regions of the in situ synchrotron X-ray diffraction data in conjunction with the electrochemical charge/discharge
Recommended publications
  • Oxidation State Slides.Key
    Oxidation States Dr. Sobers’ Lecture Slides The Oxidation State Also known as the oxidation number The oxidation state is used to determine whether an element has been oxidized or reduced. The oxidation state is not always a real, quantitative, physical constant. The oxidation state can be the charge on an atom: 2+ - MgCl2 Mg Cl Oxidation State: +2 -1 2 The Oxidation State For covalently bonded substances, it is not as simple as an ionic charge. A covalent bond is a sharing of electrons. The electrons are associated with more than one atomic nuclei. This holds the nuclei together. The electrons may not be equally shared. This creates a polar bond. The electronegativity of a covalently bonded atom is its ability to attract electrons towards itself. 3 Example: Chlorine Sodium chloride is an ionic compound. In sodium chloride, the chloride ion has a charge and an oxidation state of -1. The oxidation state of sodium is +1. 4 Example: Chlorine In a chlorine molecule, the chlorine atoms are covalently bonded. The two atoms share electrons equally and the oxidation state is 0. 5 Example: Chlorine The two atoms of a hydrogen chloride molecule are covalently bonded. The electrons are not shared equally because chlorine is more electronegative than hydrogen. There are no ions but the oxidation state of chlorine in HCl is -1 and the oxidation state of hydrogen is +1. 6 7 Assigning Oxidation States See the handout for the list of rules. Rule 1: Free Elements Free elements have an oxidation state of zero Example Oxidation State O2(g) 0 Fe(s) 0 O3(g) 0 C(graphite) 0 C(diamond) 0 9 Rule 2: Monatomic Ions The oxidation state of monatomic ions is the charge of the ion Example Oxidation State O2- -2 Fe3+ +3 Na+ +1 I- -1 V4+ +4 10 Rule 3: Fluorine in Compounds Fluorine in a compound always has an oxidation state of -1 Example Comments and Oxidation States NaF These are monatomic ions.
    [Show full text]
  • Structure-Property Relationships of Layered Oxypnictides
    AN ABSTRACT OF THE DISSERTATION OF Sean W. Muir for the degree of Doctor of Philosophy in Chemistry presented on April 17, 2012. Title: Structure-property Relationships of Layered Oxypnictides Abstract approved:______________________________________________________ M. A. Subramanian Investigating the structure-property relationships of solid state materials can help improve many of the materials we use each day in life. It can also lead to the discovery of materials with interesting and unforeseen properties. In this work the structure property relationships of newly discovered layered oxypnictide phases are presented and discussed. There has generally been worldwide interest in layered oxypnictide materials following the discovery of superconductivity up to 55 K for iron arsenides such as LnFeAsO1-xFx (where Ln = Lanthanoid). This work presents efforts to understand the structure and physical property changes which occur to LnFeAsO materials when Fe is replaced with Rh or Ir and when As is replaced with Sb. As part of this work the solid solution between LaFeAsO and LaRhAsO was examined and superconductivity is observed for low Rh content with a maximum critical temperature of 16 K. LnRhAsO and LnIrAsO compositions are found to be metallic; however Ce based compositions display a resistivity temperature dependence which is typical of Kondo lattice materials. At low temperatures a sudden drop in resistivity occurs for both CeRhAsO and CeIrAsO compositions and this drop coincides with an antiferromagnetic transition. The Kondo scattering temperatures and magnetic transition temperatures observed for these materials can be rationalized by considering the expected difference in N(EF)J parameters between them, where N(EF) is the density of states at the Fermi level and J represents the exchange interaction between the Ce 4f1 electrons and the conduction electrons.
    [Show full text]
  • Plutonium Is a Physicist's Dream but an Engineer's Nightmare. with Little
    Plutonium An element at odds with itself lutonium is a physicist’s dream but an engineer’s nightmare. With little provocation, the metal changes its density by as much as 25 percent. It can Pbe as brittle as glass or as malleable as aluminum; it expands when it solidi- fies—much like water freezing to ice; and its shiny, silvery, freshly machined surface will tarnish in minutes. It is highly reactive in air and strongly reducing in solution, forming multiple compounds and complexes in the environment and dur- ing chemical processing. It transmutes by radioactive decay, causing damage to its crystalline lattice and leaving behind helium, americium, uranium, neptunium, and other impurities. Plutonium damages materials on contact and is therefore difficult to handle, store, or transport. Only physicists would ever dream of making and using such a material. And they did make it—in order to take advantage of the extraordinary nuclear properties of plutonium-239. Plutonium, the Most Complex Metal Plutonium, the sixth member of the actinide series, is a metal, and like other metals, it conducts electricity (albeit quite poorly), is electropositive, and dissolves in mineral acids. It is extremely dense—more than twice as dense as iron—and as it is heated, it begins to show its incredible sensitivity to temperature, undergoing dramatic length changes equivalent to density changes of more than 20 percent. Six Distinct Solid-State Phases of Plutonium Body-centered orthorhombic, 8 atoms per unit cell Face-centered cubic, 4 atoms per unit cell Body-centered monoclinic, Body-centered cubic, 8 34 atoms per unit cell 2 atoms per unit cell δ δ′ ε Contraction on melting 6 γ L L 4 β Monoclinic, 16 atoms per unit cell Anomalous Thermal Expansion and Phase Instability of Plutonium Length change (%) 2 Pure Pu Pure Al α 0 200 400 600 800 Temperature (°C) 16 Los Alamos Science Number 26 2000 Plutonium Overview Table I.
    [Show full text]
  • HO2 Hydroperoxyl Radical
    Railsback's Some Fundamentals of Mineralogy and Geochemistry The multiple forms of oxygen Fully-reduced Not-fully-reduced oxygen; oxygen unstable at some time scale Mineralogists think of oxygen in Nominal its 2- oxidation state in minerals, oxidation and geochemists additionally think number -2 -1 0 about it as elemental diatomic Name of Elemental oxygen (O2) in redox geochemistry. Oxide However, that's just a beginning if state oxygen one additionally considers chemical processes in the atmosphere. As Oxide minerals Diatomic the table at right shows with its blue e.g., MgO oxygen region, atmospheric chemistry additionally deals with ozone, with Oxysalt minerals peroxide, and with oxide gases. O2 The interaction of the less-reduced e.g., CaCO3 Hydroxyl forms of oxygen with the not-fully- & MgFeSiO4 radical Ozone oxidized gases (SO2, NO, NO2, Examples 0 etc.) provides much entertainment Hydroxide minerals OH O3 in atmospheric chemistry. e.g., Al(OH) 3 Hydrogen Atomic One very important point to note here is the difference between OH, ology Hydroxide ion peroxide oxygen the highly reactive hydroxyl radical, Minera - and the hydroxide ion OH-, the OH H2O2 O entity found in water that we can Hydroperoxyl Significant think of as dissociated H2O. In the Water & its vapor in the upper table at right, the OH representing radical atmosphere the peroxide radical has a "0" H2O (>85 km) superscript to remind readers of its HO2 overall neutral charge, but most Aqueous/redox Oxide gases One O0 & authors and printers leave it simply geochemistry e.g., CO, CO , SO one O- as an unadorned "OH".
    [Show full text]
  • Synthesis, Structure and Properties of Layered Phosphide Nitrides Akth2mn4p4n2 (Ak = Rb, Cs)
    Synthesis, structure and properties of layered phosphide nitrides AkTh2Mn4P4N2 (Ak = Rb, Cs) Bai-Zhuo Li,a Si-Qi Wu,a Zhi-Cheng Wang,a Cao Wang,b and Guang-Han Cao*,a,c a Department of Physics, Zhejiang Province Key Laboratory of Quantum Technology and Devices, Interdisciplinary Center for Quantum Information, and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China b School of Physics & Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China c Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China Keywords Intercalations | Synthetic methods | Physical properties | Phosphide nitrides | Electronic structures Main observation and conclusion We report the design, synthesis, structure, and properties of two complex layered phosphide nitrides, AkTh2Mn4P4N2 (Ak = Rb, Cs), which contain anti-fluorite-type [Mn2P2] bilayers separated by fluorite-type [Th2N2] layers as a result of the intergrowth between AkMn2P2 and ThMnPN. The new compounds are featured with an intrinsic hole doping associated with the interlayer charge transfer and a built-in chemical pressure from the [Th2N2] layers, both of which are reflected by the changes in the lattice and the atomic position of phosphorus. The measurements of magnetic susceptibility, electrical resistivity, and specific heat indicate existence of local moments as well as itinerant electrons in relation with d-p hybridizations. The expected dominant antiferromagnetic interactions with enhanced d-p hybridizations were demonstrated by the first-principles calculations only when additional Coulomb repulsions are included. The density of states at the Fermi level derived from the specific-heat analysis are 3.5 and 7.5 times of the calculated ones for Ak = Rb and Cs, respectively, suggesting strong electron correlations in the title compounds.
    [Show full text]
  • Download Article (PDF)
    Z. Kristallogr. 226 (2011) 435–446 / DOI 10.1524/zkri.2011.1363 435 # by Oldenbourg Wissenschaftsverlag, Mu¨nchen Structural chemistry of superconducting pnictides and pnictide oxides with layered structures Dirk JohrendtI, Hideo HosonoII, Rolf-Dieter HoffmannIII and Rainer Po¨ttgen*, III I Department Chemie und Biochemie, Ludwig-Maximilians-Universita¨t Mu¨nchen, Butenandtstraße 5–13 (Haus D), 81377 Mu¨nchen, Germany II Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan III Institut fu¨r Anorganische und Analytische Chemie, Universita¨t Mu¨nster, Corrensstraße 30, 48149 Mu¨nster, Germany Received October 29, 2010; accepted February 6, 2011 Pnictide / Pnictide oxide / Superconductivity / for hydride formation of CeRuSi ! CeRuSiH [6] and Intermetallics / Group-subgroup relation CeRuGe ! CeRuGeH [7]. The crystal chemical data of the huge number of ZrCuSiAs materials have recently Abstract. The basic structural chemistry of supercon- been reviewed [8]. ducting pnictides and pnictide oxides is reviewed. Crystal Although the basic crystallographic data of the many chemical details of selected compounds and group sub- ThCr2Si2 and ZrCuSiAs type compounds are known for group schemes are discussed with respect to phase transi- several years, especially for the ZrCuSiAs family, systema- tions upon charge-density formation, the ordering of va- tic property studies have been performed only recently. cancies, or the ordered displacements of oxygen atoms. These investigations mainly focused on p-type transparent Furthermore, the influences of doping and solid solutions semiconductors like LaCuSO (for a review see [9]) or the on the valence electron concentration are discussed in or- colored phosphide and arsenide oxides REZnPO [10] and der to highlight the structural and electronic flexibility of REZnAsO [11].
    [Show full text]
  • STRUCTURAL, ELECTRONIC PROPERTIES and the FEATURES of CHEMICAL BONDING in LAYERED 1111-OXYARSENIDES Larhaso and Lairaso: AB INITIO MODELING
    The preprint. Submitted to: Journal of Structural Chemistry STRUCTURAL, ELECTRONIC PROPERTIES AND THE FEATURES OF CHEMICAL BONDING IN LAYERED 1111-OXYARSENIDES LaRhAsO AND LaIrAsO: AB INITIO MODELING V.V. Bannikov, I.R. Shein Institute of Solid State Chemistry, Ural Branch Of Russian Academy of Sciences, 620990, Ekaterinburg, Pervomayskaya St., 91, Russia E-mail: [email protected] The comparative study of structural, electronic properties, topology of the Fermi surface, and the features of chemical bonding in layered 1111-oxyarsenides LaRhAsO and LaIrAsO has been performed based on the results of ab initio modeling of their electronic structure. It was established that only weak sensitivity with respect both to electron and hole doping is expected for LaIrAsO being non-magnetic metal, however, the Rh-containing compound should be characterized with weak band magnetism, and the hole doping is expected to be able to move its ground state away from the boundary of magnetic instability. The mentioned feature allows to consider LaRhAsO oxyarsenide as a possible “electron analogue” of LaFeAsO compound being the initial phase for the layered FeAs-superconductors. Keywords: 1111-phases, oxyarsenides, doping, band structure, Fermi surface, chemical bonding INTRODUCTION The oxychalcogenides and oxypnictides with common chemical formula Me(a)Me(b)(Ch/Pn)O (where Me(a) is atom of Y, La, Bi or 4f-metal, usually taking the oxidation state +3 in compounds, Me(b) is atom of d-metal, Ch = S, Se, Te, Pn = P, As, Sb) form the vast family of so-called layered 1111-phases [1,2] with tetragonal ZrCuSiAs-like structure which can be regarded as the sequence of [Me(a)–O] and [Me(b)–(Ch/Pn)] blocks alternating along the tetragonal axis, where each atom is characterized with coordination number = 4 (Fig.1).
    [Show full text]
  • On the New Oxyarsenides Eu5zn2as5o and Eu5cd2as5o
    crystals Article On the New Oxyarsenides Eu5Zn2As5O and Eu5Cd2As5O Gregory M. Darone 1,2, Sviatoslav A. Baranets 1,* and Svilen Bobev 1,* 1 Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; [email protected] 2 The Charter School of Wilmington, Wilmington, DE 19807, USA * Correspondence: [email protected] (S.B.); [email protected] (S.A.B.); Tel.: +1-302-831-8720 (S.B. & S.A.B.) Received: 20 May 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: The new quaternary phases Eu5Zn2As5O and Eu5Cd2As5O have been synthesized by metal flux reactions and their structures have been established through single-crystal X-ray diffraction. Both compounds crystallize in the centrosymmetric space group Cmcm (No. 63, Z = 4; Pearson symbol oC52), with unit cell parameters a = 4.3457(11) Å, b = 20.897(5) Å, c = 13.571(3) Å; and a = 4.4597(9) Å, b = 21.112(4) Å, c = 13.848(3) Å, for Eu5Zn2As5O and Eu5Cd2As5O, respectively. The crystal structures include one-dimensional double-strands of corner-shared MAs4 tetrahedra (M = Zn, Cd) and As–As bonds that connect the tetrahedra to form pentagonal channels. Four of the five Eu atoms fill the space between the pentagonal channels and one Eu atom is contained within the channels. An isolated oxide anion O2– is located in a tetrahedral hole formed by four Eu cations. Applying the valence rules and the Zintl concept to rationalize the chemical bonding in Eu5M2As5O(M = Zn, Cd) reveals that the valence electrons can be counted as follows: 5 [Eu2+] + 2 [M2+] + 3 × × × [As3–] + 2 [As2–] + O2–, which suggests an electron-deficient configuration.
    [Show full text]
  • The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen Over the Pdcl2–Cucl2/Γ-Al2o3 Nanocatalyst
    nanomaterials Article The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst Lev Bruk 1, Denis Titov 1, Alexander Ustyugov 1, Yan Zubavichus 2 ID , Valeriya Chernikova 3, Olga Tkachenko 4, Leonid Kustov 4,*, Vadim Murzin 5, Irina Oshanina 1 and Oleg Temkin 1 1 Moscow Technological University, Institute of Fine Chemical Technology, Department of General Chemical Technology, Moscow 119571, Russia; [email protected] (L.B.); [email protected] (D.T.); [email protected] (A.U.); [email protected] (I.O.); [email protected] (O.T.) 2 National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; [email protected] 3 Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; [email protected] 4 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia; [email protected] 5 Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +7-499-137-2935 Received: 19 February 2018; Accepted: 30 March 2018; Published: 3 April 2018 Abstract: The state of palladium and copper on the surface of the PdCl2–CuCl2/γ-Al2O3 nanocatalyst for the low-temperature oxidation of CO by molecular oxygen was studied by various spectroscopic techniques. Using X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), freshly prepared samples of the catalyst were studied.
    [Show full text]
  • List of Oxidation States of the Elements 1
    List of oxidation states of the elements 1 List of oxidation states of the elements This is a list of all the known oxidation states of the chemical elements, excluding nonintegral values. The most common oxidation states are in bold. This table is based on Greenwood's,[1] with all additions noted. Oxidation state 0, which is found for all elements, is implied by the column with the element's symbol. The format of the table, based on one devised by Mendeleev in 1889, highlights some of the periodic trends. Ä1 H +1 He Li +1 Be +2 Ä1 B +1 +2 +3 [2] Ä4 Ä3 Ä2 Ä1 C +1 +2 +3 +4 Ä3 Ä2 Ä1 N +1 +2 +3 +4 +5 Ä2 Ä1 O +1 +2 Ä1 F Ne Ä1 Na +1 Mg +1 +2 [3] Al +1 +3 Ä4 Ä3 Ä2 Ä1 Si +1 +2 +3 +4 Ä3 Ä2 Ä1 P +1 +2 +3 +4 +5 Ä2 Ä1 S +1 +2 +3 +4 +5 +6 Ä1 Cl +1 +2 +3 +4 +5 +6 +7 Ar Ä1 K +1 Ca +2 Sc +1 +2 +3 Ä1 Ti +2 +3 +4 Ä1 V +1 +2 +3 +4 +5 Ä2 Ä1 Cr +1 +2 +3 +4 +5 +6 Ä3 Ä2 Ä1 Mn +1 +2 +3 +4 +5 +6 +7 Ä2 Ä1 Fe +1 +2 +3 +4 +5 +6 Ä1 Co +1 +2 +3 +4 +5 Ä1 Ni +1 +2 +3 +4 Cu +1 +2 +3 +4 Zn +2 Ga +1 +2 +3 Ä4 Ge +1 +2 +3 +4 Ä3 As +2 +3 +5 List of oxidation states of the elements 2 Ä2 Se +2 +4 +6 Ä1 Br +1 +3 +4 +5 +7 Kr +2 Rb +1 Sr +2 [4] [5] Y +1 +2 +3 Zr +1 +2 +3 +4 Ä1 Nb +2 +3 +4 +5 Ä2 Ä1 Mo +1 +2 +3 +4 +5 +6 Ä3 Ä1 Tc +1 +2 +3 +4 +5 +6 +7 Ä2 Ru +1 +2 +3 +4 +5 +6 +7 +8 Ä1 Rh +1 +2 +3 +4 +5 +6 Pd +2 +4 Ag +1 +2 +3 Cd +2 In +1 +2 +3 Ä4 Sn +2 +4 Ä3 Sb +3 +5 Ä2 Te +2 +4 +5 +6 Ä1 I +1 +3 +5 +7 Xe +2 +4 +6 +8 Cs +1 Ba +2 La +2 +3 Ce +2 +3 +4 Pr +2 +3 +4 Nd +2 +3 Pm +3 Sm +2 +3 Eu +2 +3 Gd +1 +2 +3 Tb +1 +3 +4 Dy +2 +3 Ho +3 Er +3 Tm +2 +3 Yb +2 +3 Lu +3 Hf +2 +3 +4 List of oxidation
    [Show full text]
  • Crystal Structure of the New Fese1àx Superconductorw
    View Article Online / Journal Homepage / Table of Contents for this issue COMMUNICATION www.rsc.org/chemcomm | ChemComm Crystal structure of the new FeSe1Àx superconductorw Serena Margadonna,*a Yasuhiro Takabayashi,b Martin T. McDonald,b Karolina Kasperkiewicz,a Yoshikazu Mizuguchi,c Yoshihiko Takano,c Andrew N. Fitch,d Emmanuelle Suarde and Kosmas Prassides*b Received (in Cambridge, UK) 29th July 2008, Accepted 5th September 2008 First published as an Advance Article on the web 26th September 2008 DOI: 10.1039/b813076k The newly discovered superconductor FeSe1Àx (x E 0.08, extremely sensitive to applied pressure and rises rapidly at a onset À1 9 Tc E 13.5 K at ambient pressure rising to 27 K at rate of 9.1 K GPa , reaching a value of 27 K at 1.48 GPa. 1.48 GPa) exhibits a structural phase transition from tetragonal a-FeSe crystallises at room temperature with the tetragonal to orthorhombic below 70 K at ambient pressure—the crystal PbO-type structure (Fig. 1) and comprises stacks of edge- structure in the superconducting state shows remarkable sharing FeSe4 tetrahedra—the FeSe packing motif is similarities to that of the REFeAsO1ÀxFx (RE = rare earth) essentially identical to that of the FeAs layers in the iron superconductors. oxyarsenides. On cooling, it was reported that a structural phase transition occurs near 105 K to an unidentified Superconductivity at the surprisingly high temperature of low-temperature structure with possible triclinic symmetry.8 55 K has been recently reported in fluorine-doped rare-earth At present, little else is known about the electronic properties 1 iron oxyarsenides, REFeAsO1ÀxFx.
    [Show full text]
  • Converting Between the Oxides of Nitrogen Using Metal–
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal | View Issue Converting between the oxides of nitrogen using metal–ligand coordination complexes Cite this: Chem. Soc. Rev., 2015, 44,6708 Andrew J. Timmons and Mark D. Symes* À À The oxides of nitrogen (chiefly NO, NO3 ,NO2 and N2O) are key components of the natural nitrogen cycle and are intermediates in a range of processes of enormous biological, environmental and industrial importance. Nature has evolved numerous enzymes which handle the conversion of these oxides to/from other small nitrogen-containing species and there also exist a number of heterogeneous catalysts that can mediate similar reactions. In the chemical space between these two extremes exist Received 30th March 2015 metal–ligand coordination complexes that are easier to interrogate than heterogeneous systems and simpler DOI: 10.1039/c5cs00269a in structure than enzymes. In this Tutorial Review, we will examine catalysts for the inter-conversions of the various nitrogen oxides that are based on such complexes, looking in particular at more recent examples www.rsc.org/chemsocrev that take inspiration from the natural systems. Creative Commons Attribution 3.0 Unported Licence. Key learning points (1) The key role of nitrogen oxides (especially nitrite) in the nitrogen cycle. (2) The coordination chemistry in the active sites of the various nitrogen oxide reductase enzymes. (3) How nitrite binds to, and is reduced at, metal ligand coordination complexes. (4) The various platforms that have been used for NO reduction. (5) Nitrate reduction with metal ligand coordination complexes. This article is licensed under a 1. Introduction Open Access Article.
    [Show full text]