Subject Index, Volume 81, 1996

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index, Volume 81, 1996 American Mineralogist, Volume 81, pages 1543-1551, 1996 SUBJECT INDEX, VOLUME 81, 1996 Ag3TeS 1013 geikielite 485 florencite-(La) 1263 4°Ar 940 hornblende 928 glass 229 AuO(OH) 1282 hyttsj6ite 743 granitic melt 202 AuO(OH,Cl)onH20 766 kalsilite 561, 1360 kaolin 26 Achtarandite 516 kaolinite 26 migmatite 141 Afghanite 1003 kinoshitalite 485 orendite 229 Albite 92, 452, 789, 1133, 1344, laumontite 658 peridotite 79 1413 leonhardite 658, 668 rhyolite 158 Alkali feldspar 92, 719, 800, 1425 liandratite 1237 rhyolitic glass 158, 1249 Almandine 418 magnesiochromite 1186 sandstone 213 Altisite 516 magnesite 181 serpentinite 79 Aluminate sodalite 1375 medenbachite 505 volcanic glass 1176 Aluminosilicate glasses 265 muscovite 141, 1460 volcanic rocks 982 Alumoklyuchevskite 249 namuwite 238 Analysis, surface (mineral) Amphibole 135, 495, 1126 nanpingite 105 calcite 1 Analcime 39 nepheline 561, 1360 pyrite 261 Analysis, chemical (mineral) olivine 194, 1519 Anatexis 141 albite 92 omphacite 181 Androsite-(La) 735 alkali feldspar 719 orthopyroxene 676, 842 Ankerite 1141 almandine 418 pentlandite 187 Annite 475 amphibole 135, 495 phlogopite 202, 485,913 Annite-sanidine-magnetite 415 androsite-(La) 735 pigeonite 1166 Anorthoclase 1332 apatite 515 plagioclase 141, 913, 982, 1460 Antimonselite 1013 augite 1166 potassium feldspar 141 Antitaenite 766 bechererite 244 pumpellyite 603 Apatite 864, 1476 betafite 1237 pyralspitic garnet 418 Aragonite 181, 611 biopyribole 404 pyrite 119, 187 Arsenogorceixite 249 biotite 135, 141, 495, 1396, pyrope 418, 706 Asteroid 525 1460 pyroxene 202, 525, 1438, 1523 Augite 685, 1166 brewsterite 1501 pyrrhotite 187 Awards calcite 181,485 qandilite 485 Mineralogical Society of America cancrinite group 1003 quartz 891 Award, acceptance of 777 carbonate-fluorapatite 513, 515 REE-bearing piemontite 735 Mineralogical Society of America chalcopyrite 187 rutile 202, 1237 Award, presentation of 775 chlorite 79, 676, 1396 sanidine 229 Roebling Medal, acceptance of columbite-tantalite 146 scapolite 169 773 cookeite 67 serpentine 79 Roebling Medal, presentation of cordierite 141 serpentine-chlorite 213 771 cummingtonite 363,928 sillimanite 141 diopside 485 sphalerite 187 j)-As4S4 874 dolomite 181, 485 spinel 485 j)-Mg2Si04 585 dozyite 79 staurolite 1460 j)-Si3N4 249 epidote 462 tetrakalsilite 561 B 141 ferriphlogopite 913 tourmaline 1222 Ba(Ti5Fe4Mg2Cr)mOI9 766 fianelite 1270 tremolite 485, 1117 Bi3(Te,Se,S)4 516 florencite-(La) 1263 wairakite 658 Babkinite 1513 fluorapatite 515 yugawaralite 658 Baddeleyite 485 fluor-cannilloite 995 zircon 902 Bailey, Sturges William, Memorial of fluor-ferro-Ieakeite 226 Analysis, chemical (rock) 521 forsterite 485, 1523 bebedourite 913 Ballachulish aureole 485 garnet 181, 706, 1460 dunite 913 Barian mica 1513 0003-004XJ96/1112-1543$05.00 1543 1544 SUBJECT INDEX, VOLUME 81, 1996 Bebedourite 913 Cebaite-(Ce) 249 carbonate-fluorapatite 515 Bechererite 244 Chalcopyrite 187 chlorite-biotite 1396 Belovite-(Ce) 1282 Chengdeite 516 clinopyroxene 632 Beryl 395 Chert 1380 cummingtonite 363 Betafite 1237 Chiavennite 1013 defernite 625 Biopyribole 404 Chlorite 79, 676, 1396 diopside 632, 811 Biotite 135, 141, 462, 495, 940, Chlorite-biotite 1396 enstatite 1321 1396, 1460 Chloritization 79 ferriphlogopite 913 Biotite-5M 766 Chondrodite 317 fianelite 1270 Book reviews Chromite 1452 fluorapatite 515 Carey, I.W.: Thermodynamics in Claringbullite 516 fluor-canniIIoite 995 Geochemistry: The Equilibrium Clinoamphibole 1425 garnet 61, 429 Model. By G.M. Anderson and Clinoatacamite 1282 gypsum 847 D.A. Crerar 255 Clinohumite 317 hematite 1301 Essene, E.I.: Glossary of Mineral Clinoptilolite-Hp 952 hennomartinite 9 Species. By M. Fleischer and Clinopyroxene 632, 685 hillebrandite 1371 I.A. Mandarino 781 Clinozoisite 335, 341 hyttsj6ite 743 Griffen, D.T.: Physics and Coesite 181, 1217 illite 852 Chemistry of Earth Materials. Coesite-bearing eclogite 1217 illite-smectite 852 By A. Navrotsky 1287 Coesite-quartz transition 1217 katoite 1097 Gunter, M.E.: Crystal Columbite-tantalite 146 LiScSi04 327 Identification with the Compressibility measurements laurelite 1277 Polarizing Microscope. By R.E. aragonite 611 lawsonite 833 Stoiber and S.A. Morse 255 clinozoisite 341 lead feldspar 1337 Heaney, P.I.: Handbook of dolomite 611 lizardite-1 T 1111 Mineralogy, Vol. 2: Silica, epidote 341 MgSiOJ-rich garnet 1289 Silicates. By I.W. Anthony, R.A. forsterite 51 majorite 1289 Bideaux, K.W. BIadh, and M.C. katoite 1097 malayaite 595 Nichols 524 LiScSi04 327 medenbachite 505 Maurice, P.A.: Mineral Surfaces. lawsonite 341, 833 microcline 1344 Edited by D.I. Vaughan and MgSiOJ ilmenite 45 Na6SiJ[Si9027] 1105 R.A.D. Pattrick 1020 (Ni,Mg)2Si04 olivine 1519 (Ni,Mg)2Si04 olivine 1519 Virgo, D.: Applied Mossbauer olivine 51, 327 namuwite 238 Spectroscopy: Theory and zoisite 341 nanpingite 105 Practice for Geochemists and Cookeite 67 olivine 327 Archaeologists. Edited by S. Copper aluminum phosphate 516 orthopyroxene 842, 1321, 1438 Mitra 1287 Copper antimony selenide 1513 phlogopite 913 Borcarite 516 Cordierite 39, 141, 349 pigeonite 1438 Bottinoite 1494 Corundum 676 pumpellyite 603 Brewsterite 1501 Cristobalite 1057, 1380 pyroxene 525 Crystal growth quartz 891 Ca self-diffusion 448 annite 475 REE-bearing piemontite 735 CaCoSi04 963 brewsterite 1501 Si02 785 CaCoSi206 963 calcite 1 sanidine 229 Ca2CoSiP7 963 chlorite-biotite 1396 scapolite 169 CaSiOJ perovskite 1293 chromite 1452 serpentine-chlorite 79, 213 Cd 864 magnetite 475 titanite 1527 Cu-Au 1021 oscillatory zoning 982 tremolite 1117 CU4PbllBi16SJ7 1013 quartz 158 zircon 902 Cadmium aluminum phosphate 516 sanidine 475 Crystal synthesis Calcioburbankite 1013 Crystal structure alkali feldspar 719 Calcite 1, 181,485, 1141 albite 1344 ankerite 1141 Calcybeborosilite 1513 androsite-(La) 735 carbonate-fluorapatite 515 Cancrinite group 1003 bechererite 244 chlorite 676 Carbonate 1021 biopyribole 404 chondrodite 317 Carbonate-fluorapatite 513, 515 bottinoite 1494 clinohumite 317 Carbonatite 1237 brewsterite 1501 corundum 676 Cathodoluminescence 891 calcite 1 fluorapatite 515 SUBJECT INDEX, VOLUME 81,1996 1545 forsterite 676 hillebrandite 1371 leucite 369 holtedahlite 385 illite 852 Iizardite-1 T 1111 kalsilite 1360 illite-smectite 852 zoisite 335 lead feldspar 1337 kalsilite 561, 1360 Experimental petrology lead oxychloride 1350 lawsonite 833 albite 452 Na6Si3[Si90Z7]1105 lead oxychloride 1350 alkali feldspar 719 orthopyroxene 676 marcasite 119 annite 475 phase A 3 17 nepheline 561, 1360 augite 685 phase B 317 opal (microcrystalline) 1380 Ca self-diffusion 448 phosphoellenbergerite 385 orthopyroxene 842 chlorite 676 potassium richterite 56 pyrite 119, 261 chondrodite 3 17 pyroxene 1126 pyroxene 1126 clinohumite 317 spinel 676 sanidine 229 clinoptilolite-HzO 952 superhydrous B 317 serpentine-chlorite 79 clinopyroxene 685 tremolite 1117 tetrakalsilite 561 corundum 676 Cummingtonite 363, 928 tremolite 1126 epidote 462 tridymite 1380 forsterite 676 Davyne 1003 Electron microscopy glass 1148, 1176 Defernite 625 aluminate sodalite 1375 granite 202 Diaspore 335 amphibole 1126 granodiorite 462 Diffusion apatite 1476 granulites 202 4°Ar 940 biopyribole 404 grossular 448 forsterite 51, 1315 biotite 1396 LiAlSiPs 452 garnet 1208 chlorite 1396 magnetite 475 glass 1148 chlorite-biotite 1396 majorite 1289 grossular 448 columbite-tantalite 146 orthoclase 452 pyrope 706 cookeite 67 orthopyroxene 676, 685 pyroxene 1166 cristobalite 1380 peraluminous melt 719 Diogenite 525, 1438 cummingtonite 928 phase A 317 Diopside 485, 632, 811 fianelite 1270 phase B 317 Dolomite 181, 485, 611, 1141 garnet 1208 pigeonite 685 Dozyite 79 hillebrandite 1371 pyrope 706 DTA, TGA hornblende 928 pyroxene 685 ankerite 1141 kalsilite 561, 1360 rhyolitic glass 1176 cIinoptilolite-HzO 952 magnesiochromite 1186 sanidine 475 granitic melt 1297 magnetite 375 silicate melt 452,1155 laumontite 658 malayaite 595 spinel 676 leonhardite 658, 668 marcasite 119 superhydrous B 317 wairakite 658 nepheline 561 tonalite 462 yugawaralite 658 opal (microcrystalline) 1380 tremolite 1117 Dunite 913 pyrite 119 viscosity 126,1155 Duporthite 1013 pyroxene 1126, 1438 water solubility 452 Dzharkenite 1013 serpentine-chlorite 79 Exsolution lamellae 1166 spinel 375 Eclogite 181 tetrakalsilite 561 Edenharterite 516 tremolite 1126 F 202 Electrical properties (pyrite) 1036 tridymite 1380 (Fe,Ru)Sz 766 Electron density 1344 Enstatite 1321 Fairbairn, Harold Williams, Memorial Electron diffraction Epidote 341, 462 of 1018 aluminate sodalite 1375 Epistilbite 1513 Feldspar 92, 1021, 1057 amphibole 1126 Eucrite 525, 1438 Ferriphlogopite 913 biopyribole 404 Expansivity measurements Fianelite 1270 biotite 1396 clinozoisite 335 Fissiogenic REEs 1263 chlorite 1396 diaspore 335 Florencite-(La) 1263 chlorite-biotite 1396 glass 1148 Fluorapatite 515 columbite-tantalite 146 gypsum 847 Fluorbritholite-(Ce) 1013 cookeite 67 KzMgSi5012 369 Fluor-cannilloite 995 cristobalite 1380 lawsonite 335, 833 Fluor-ferro-Ieakeite 226 -----.- 1546 SUBJECT INDEX, VOLUME 81,1996 Forsterite 51, 257, 485, 545, 676, Halurgite 1513 granodiorite 462 1315, 1523 Hanawaltite 12&2 hllplogranitc melt 1155 Frankhawthorneite 516 Haplogranitic melt 1155, 1507 melt inclusions 158 Franzinite 1003 Hematite 1301 norite 1166 Hennomartinite 9, 1080 orendite 229 Gabbronorite 1166 High-pressure phases orthopyroxene 685 Ganomalite 516 aragonite 181 pegmatite 105 Gaotaiite 249 CaSi03 perovskite 1293 pigeonite 685 Garnet 61, 181, 429, 462, 706, chlorite 676 Pinatubo 982 1021, 1208, 1460 chondrodite 317 pyroxene
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Holdawayite Mn (CO3)
    2+ Holdawayite Mn6 (CO3)2(OH)7(Cl, OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Fibrous along [001]; commonly in granular aggregates, or massive, with individual grains to 2 cm. Physical Properties: Cleavage: On {100}, perfect. Fracture: Irregular. Tenacity: Moderately brittle. Hardness = ∼3 D(meas.) = 3.19(4) D(calc.) = 3.24 Optical Properties: Transparent to translucent. Color: Pale to dark pink if fresh, turning brown on exposure, developing a dark sooty coating. Streak: Pale pink. Luster: Vitreous, silky in fibrous aggregates. Optical Class: Biaxial (–). Orientation: X = b; Z ∧ c = 45(3)◦. Dispersion: r< v,moderate. α = 1.644(1) β = 1.719(1) γ = 1.721(1) 2V(meas.) = 12(3)◦ 2V(calc.) = 18◦ Cell Data: Space Group: C2/m. a = 23.437(5) b = 3.3137(3) c = 16.618(6) β = 111.15(2)◦ Z=4 X-ray Powder Pattern: Kombat mine, Namibia. 10.93 (100), 5.459 (80), 3.879 (70), 2.690 (60b), 2.589 (50b), 7.77 (40), 2.926 (40) Chemistry: (1) CO2 14.2 B2O3 1.2 FeO 0.2 MnO 64.6 MgO 4.4 CaO 0.5 Cl 4.4 H2O 11.47 −O=Cl2 1.0 Total 100.0 (1) Kombat mine, Namibia; by electron microprobe, C by Leco analyzer, H2O by the Penfield method, B may be due to sussexite contamination; corresponds to (Mn5.24Mg0.62 Ca0.06Fe0.02)Σ=5.94[(CO3)1.86(BO3)0.20]Σ=2.06[(OH)7.34Cl0.74]Σ=8.08. Occurrence: Locally abundant as a rare vein mineral in low-grade metamorphosed Mn-rich sedimentary rocks intercalated with sedimentary iron deposits.
    [Show full text]
  • Sussexite Mn2+BO2(OH)
    2+ Sussexite Mn BO2(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As bladed acicular crystals, to 7 mm; cross-vein or radial fibrous, in felted or matted aggregates, nodular. Twinning: Submicroscopic twinning on {100} which cannot be resolved optically. Physical Properties: Tenacity: Inflexible. Hardness = 3–3.5 D(meas.) = 3.30 D(calc.) = 3.335 Optical Properties: Semitransparent. Color: White to buff, straw-yellow, pale pink; colorless in transmitted light. Streak: White. Luster: Silky, dull, earthy. Optical Class: Biaxial (–). Orientation: Parallel extinction; X = elongation; Z ⊥ flattening. Dispersion: r> v. α= 1.670 β = 1.728 γ = 1.732 2V(meas.) = ∼25◦ Cell Data: Space Group: P 21/a. a = 12.866(3) b = 10.718(2) c = 3.287(1) β =94.75(3)◦ Z=8 X-ray Powder Pattern: N’chwaning II mine, South Africa. 6.43 (10), 2.773 (7), 3.34 (6), 2.632 (6), 2.494 (6), 2.741 (5), 2.694 (5) Chemistry: (1) (3) B2O3 30.52 30.33 FeO 0.16 MnO 49.40 61.82 MgO 9.56 CaO 2.03 H2O 8.33 7.85 Total [100.00] 100.00 (1) Franklin, New Jersey, USA; recalculated to 100% after deduction of willemite 4.5%. (2) N’chwaning II mine, South Africa; by electron microprobe, analysis not given; stated to correspond to (Mn0.95Mg0.05)Σ=1.00BO2(OH). (3) MnBO2(OH). Polymorphism & Series: Forms a series with szaib´elyite. Occurrence: A rare hydrothermal mineral typically in veinlets in boron-bearing metamorphosed Mn–Fe–Zn deposits.
    [Show full text]
  • Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Crystal Growth, Structure and Physical Properties of Crystals
    Crystal growth, structure and physical properties of crystals Kurazhkovskaya V.S., Dorokhova G.I., Zyk- W – univalent and bivalent anions. Structures of vesuvi- ova T.B. Change of vezuvianit structural pe- anites are studied in dependence on a character of cation ordering in different sites within three space groups: culiarity at isomorphism. P4/nnc and its two sub-groups P4nc (C4ν) and P4/n (C4h). M.V. Lomonosov Moscow State University, Geological Depart- It is found earlier [1, 2], that two “garnet blocks” (GB), i.e. ment, Vorobjovy Gory, Moscow, 119899, Russia crys- volume bar, outsets from the grossular garnet structure, are [email protected] the basis of the vesuvianite structure. Junction of two GB key words: [vezuvianite, infrared spectroscopy, iso- leads to formation of diorthogroups [Si2O7]. Cation com- morphism] position of GB {Ca18Al8Si18} is practically constant. Cations of the “vesuvianite filling” (VF) occupy cavities Vesuvianite is an ortho-diorthosilicate of a general formed within the frame-work. Isomorphic substitutions schematic formula X~19Y13Z18O68W10, where X – Ca and are characteristic feature of VF (Table 1). Hypothetical other cations, which occupy sites of coordination number position R is suggested for vesuvianites with an excess 8, Y – cations occupying octahedrons and pentagonal cations (>19). polyhedrons: Al, Fe, Mg, Ti, etc., Z – Si in tetrahedrons, Table 1. Positions of cations CN Garnet block (GB) Vezuvianite filling (VF) 8 (Ca1)2 (Ca2)8 (Ca3)8 (Ca4)1 6 (Al1)8 (Al2)4 (R?)2 and > 5 (Al3)1 Table 2. Positions of “vezuvianite filling” N of sample (Ca4)1 (Al2)4 (Al3)1 (R?)2 and > 1 Ca1 Al2.93Fe1.07 Ca0.66Na0.34 Fe2.1Mn0.11 2 Ca1 Al3.72Fe0.24Ti0.04 Ca0.58Na0.23Mg0.14Zn0.05 Fe0.38Mg2.03 3 Ca1 Al2.16Fe0.93Ti0.92 Ca0.92Na0.39? Fe0.91Mg1.88Mn0.1 4 Ca1 Al1.16Fe2.05Mg0.84 Ca0.61Na0.18Mn0.1Zn0.02 Mg2.12 Table 3.
    [Show full text]
  • 2(Si4o12)O(O,F), a New K-Nb-Cyclosilicate from Chuktukon Carbonatite Massif, Chadobets Upland, Krasnoyarsk Territory, Russia
    minerals Article Rippite, K2(Nb,Ti)2(Si4O12)O(O,F), a New K-Nb-Cyclosilicate from Chuktukon Carbonatite Massif, Chadobets Upland, Krasnoyarsk Territory, Russia Victor V. Sharygin 1,2,3,* , Anna G. Doroshkevich 1,4 , Yurii V. Seryotkin 1,3 , Nikolai S. Karmanov 1, Elena V. Belogub 5,6, Tatyana N. Moroz 1, Elena N. Nigmatulina 1, Alexander P. Yelisseyev 1, Vitalii N. Vedenyapin 1 and Igor N. Kupriyanov 1,3 1 V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, 3 Acad. Koptyuga pr., 630090 Novosibirsk, Russia; [email protected] (A.G.D.); [email protected] (Y.V.S.); [email protected] (N.S.K.); [email protected] (T.N.M.); [email protected] (E.N.N.); [email protected] (A.P.Y.); [email protected] (V.N.V.); [email protected] (I.N.K.) 2 ExtraTerra Consortium, Institute of Physics and Technology, Ural Federal University, 19 Mira str., 620002 Ekaterinburg, Russia 3 Department of Geology and Geophysics, Novosibirsk State University, 1 Pirogov str., 630090 Novosibirsk, Russia 4 Geological Institute, Siberian Branch of the RAS, 6a Sakhyanova str., 670047 Ulan-Ude, Russia 5 South Urals Federal Research Center of Mineralogy and Geoecology, Uralian Branch of the RAS, 456317 Miass, Russia; [email protected] 6 Faculty of Geology, National Research South Ural State University, Miass Branch, 20 8-July str., Bldg. 10, 456304 Miass, Russia * Correspondence: [email protected]; Tel.: +7-383-330-80-84 Received: 9 November 2020; Accepted: 3 December 2020; Published: 8 December 2020 Abstract: Rippite K2(Nb,Ti)2(Si4O12)(O,F)2, a new K-Nb-cyclosilicate, has been discovered in calciocarbonatites from the Chuktukon massif (Chadobets upland, SW Siberian Platform, Krasnoyarsk Territory, Russia).
    [Show full text]
  • Geology of Greenland Survey Bulletin 190, 25-33
    List of all minerals identified in the Ilímaussaq alkaline complex, South Greenland Ole V. Petersen About 220 minerals have been described from the Ilímaussaq alkaline complex. A list of all minerals, for which proper documentation exists, is presented with formulae and references to original publications. The Ilímaussaq alkaline complex is the type locality for 27 minerals including important rock-forming minerals such as aenigmatite, arfvedsonite, eudialyte, poly- lithionite, rinkite and sodalite. Nine minerals, chalcothallite, karupmøllerite-Ca, kvanefjeldite, nabesite, nacareniobsite-(Ce), naujakasite, rohaite, semenovite and sorensenite appear to be unique to the Ilímaussaq complex. Geological Museum, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark. E-mail: [email protected] Keywords: agpaite, Ilímaussaq, mineral inventory, minerals type locality The agpaitic complexes Ilímaussaq (South Greenland), world. Most of the minerals for which Ilímaussaq is Khibina and Lovozero (Kola Peninsula, Russia), and the type locality have later been found in other com- Mont Saint-Hilaire (Quebec, Canada) are among the plexes of agpaitic rocks. areas in the world which are richest in rare minerals. Two minerals were described simultaneously from About 700 minerals have been found in these com- Ilímaussaq and the Kola Peninsula, tugtupite and vi- plexes which hold the type localities for about 200 tusite. Tugtupite was published from the Lovozero minerals. complex by Semenov & Bykova (1960) under the name About 220 minerals have been found in the Ilímaus- beryllosodalite and from Ilímaussaq by Sørensen (1960) saq complex of which 27 have their type localities under the preliminary name beryllium sodalite which within the complex. In comparison Khibina and Lov- was changed to tugtupite in later publications (Søren- ozero hold the type localities for 127 minerals (Pekov sen 1962, 1963).
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]