Glossary of Obsolete Mineral Names

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Obsolete Mineral Names M. = kaolinite + illite ?, Robertson 23 (1954). M 40 = kapustinite, EJM 21, 1071 (2009). maacle = twinned diamond, Thrush 666 (1968). maakite = hydrohalite, MM 30, 738 (1955). maansteen = orthoclase or Ca-rich albite or gypsum, Council for Geoscience 770 (1996). macallisterite = mcallisterite, AM 50, 629 (1965). MacAllisterite = mcallisterite, AM Index 41-50, 191 (1968). macasanite = obsidian (lava), MM 43, 1063 (1980). macconnellite = mcconnellite, Fleischer 71 (1975). MacConnellite = mcconnellite, de Fourestier 38 (1994). MacFallite = macfallite, MM 48, 577 (1984). macfarlanite = silver + nickeline + galena + sphalerite + chalcopyrite, Dana 7th I, 98 (1944). MacGillite = mcgillite, de Fourestier 203 (1999). MacGovernit = mcgovernite, Hey 503 (1962). macgovernite = mcgovernite, MM 21, 570 (1928). machiavecchia = compact calcite (marble), O'Donoghue 367 (2006). MacIntoshit = U-(OH)-rich thorite, Clark 413 (1993). mackelveyite = mckelveyite-(Y), MM 36, 1153 (1968). MacKelveyite = mckelveyite-(Y), de Fourestier 38 (1994). Mackensit = Fe3+-rich chamosite, AM 4, 61 (1919). mackinavite = mackinawite, Chudoba EIV, 65 (1974). mackinstryite = mckinstryite, AM 52, 1253 (1967). MacKinstryite = mckinstryite, Kostov & Minčeva-Stefanova 207 (1981). mackintoshite = U-(OH)-rich thorite, AM 38, 1007 (1953). MacKintintoshite = U-(OH)-rich thorite, de Fourestier 38 (1994). Mackit = hanksite, Strunz 548 (1970). macle = twinned cross-formed andalusite, Haüy II, 365 (1822). macle basaltique = twinned cross-formed andalusite, Dana 6th, 496 (1892). macle en coeur = twinned gypsum, Chudoba RI, 39 (1939); [I.3,4281]. macle hyalin = andalusite, Dana 6th, 496 (1892). maclureite (Nuttall) = augite, Dana 6th, 352 (1892). maclureïte (Seybert) = chondrodite, Dana 6th, 535 (1892). maclurite (Nuttall) = augite, Clark 414 (1993). maclurite (Seybert) = chondrodite, Frondel 65 (1972). Macnocalit = dolomite + calcite, Kipfer 111 (1974). maconite = hydrobiotite, Dana 6th, 667 (1892). macrokaolinite = kaolinite + illite + montmorillonite (rock), AM 58, 1115 (1973). macrolepidolite = trilithionite or polylithionite, MM 13, 371 (1903). macroperthite = orthoclase + albite, Allaby & Allaby 277 (1990). macrotypous Kouphone Spar = lévyne, Egleston 189 (1892). macrotypous Lime Haloid = dolomite, Egleston 107 (1892). macrotypous Parachrose-Baryte = rhodochrosite, Egleston 290 (1892). macskaarany = mica, László 165 (1995). macskaezüst = mica, László 165 (1995). macskaszem = chatoyant chrysoberyl or quartz or cordierite or diopside or tourmaline, László 165 (1995). macturita = chondrodite or pyroxene, de Fourestier 203 (1999). macuaba = actinolite or jadeite, Egleston 14 (1892). macusanite = natural glass (Si-Al-Na-K-F-O), AM 84, 947 (1999). macusani üveg = natural glass (Si-Al-Na-K-F-O), László 165 (1995). Madagascar aquamarine = blue beryl, Webster & Jobbins 67 (1998). Madagascar citrine = yellow topaz, Bukanov 81 (2006). Madagascar topaz = heated yellow gem Fe-rich quartz, Thrush 211 (1968). Madagascar moonstone = Ca-rich albite, Schumann 166 (1997). Madagascar schorl = pink elbaite, Bukanov 84 (2006). Madagaskar-Mondstein = Ca-rich albite, Kipfer 111 (1974). madamait = diaspore, Chudoba EII, 949 (1960). madárszemkvarc = multicolored quartz, László 153 (1995). Maddrell's salt = synthetic Na3[P3O9], AM 65, 982 (1980). Madeiracitrin = red-brown Fe3+-rich quartz, Haditsch & Maus 122 (1974). Madeirastein = red-brown Fe3+-rich quartz, Haditsch & Maus 122 (1974). Madeira stone = red-brown Fe3+-rich quartz, Bukanov 123 (2006). Madeiratopas = red-brown Fe3+-rich quartz, Strunz 548 (1970). Madeira topaz = red-brown Fe3+-rich quartz, AM 12, 387 (1927). Madenkies = calcite, Haditsch & Maus 122 (1974). madera de montaña = sepiolite or palygorskite or fibrous actinolite or chrysotile, Novitzky 274 (1951). madera petrifica = opal-CT, de Fourestier 203 (1999). madhyamarastraka = diamond, O'Donoghue 73 (2006). madisonite = synthetic Ca2Mg2[(Al2Si3)O13] ? (slag), MM 23, 633 (1934). Madisonsit = synthetic Ca2Mg2[(Al2Si3)O13] ? (slag), Aballain et al. 210 (1968). madocite (Meunier) = iron (meteorite), Horváth 278 (2003). madosiet = madocite, Council for Geoscience 767 (1996). madre di Esmeralda = actinolite or jadeite, Egleston 14 (1892). madreporeite = compact calcite (shells, marble), Egleston 64 (1892). madreporic marble = compact calcite (shells), Dana 6th, 267 (1892). madréporite = compact calcite (shells, marble), Egleston 196 (1892). Madreporstein = compact calcite (shells, marble), Egleston 64 (1892). maeaite = omphacite, Bukanov 270 (2006). maekinenite = mäkinenite, Nickel & Nichols 247 (1991). Maenakan = pseudorutile, Clark 414 (1993). mafic family = Mg-Fe-minerals, MM 20, 460 (1925). mafite family = Mg-Fe-minerals, MM 31, 966 (1958). mafkat = turquoise, Bukanov 156 (2006). Mafurit = unknown, Chudoba EII, 755 (1959). magabasita = hübnerite, Domeyko II, 92 (1897). Magadait = magadiite, Chudoba EIV, 51 (1974). magallanita = bitumen, AM 23, 293 (1938). Magalux = synthetic gem spinel (Mg,Al)Al2O4, MM 39, 910 (1974). maganese chalcanthite = jôkokuite, Clark 434 (1993). maganese-sicklerite = sicklerite, Clark 428 (1993). maganfayalite = Mn-rich fayalite, AM 24, 659 (1939). maganite = manganite, Clark 427 (1993). maganknebelite = Fe-rich tephroite, AM 24, 659 (1939). maganthophyllite = anthophyllite, AM 63, 1051 (1978); MM 61, 309 (1997). maganthrophyllite = anthophyllite, Clark 414 (1993). magantofillit = anthophyllite, László 166 (1995). magarfvedsonite = magnesio-arfvedsonite, MM 35, 1143 (1966). magasbassanit = high-temperature 2Ca(SO4)·H2O ?, László 166 (1995). magascristobalit = high-temperature SiO2, László 166 (1995). magaskvarc = high-temperature SiO2, László 166 (1995). magasschapbachit = high-temperature AgBiS2, László 166 (1995). magastridimit = high-temperature SiO2, László 166 (1995). magaugite = Fe2+-rich diopside (Mg-rich augite), MM 27, 271 (1946). magbassite = magbasite, MM 35, 1143 (1966). magbaszit = magbasite, László 166 (1995). magerer Nephrit = zoisite or epidote + albite, Haditsch & Maus 122 (1974). Magerkohle = semianthracite (coal), Doelter IV.3; 575, 600 (1930). Magesioferrit = magnesioferrite, Clark 415 (1993). magferalsilite = majorite, AM 52, 932 (1967). maggenite = maghemite, Clark 415 (1993). maggot-ore = hemimorphite, de Fourestier 204 (1999). maghaemite = maghemite, MM 31, 966 (1958). maghagendorfite-Na• = NaMgMnFe2(PO4)3, MM 43, 230 (1979). maghastingsite = magnesiohastingsite, MM 35, 1143 (1966). maghemite (Walker) = ilmenite + hematite + goethite, Dana 7th I, 708 (1944). maghemo-magnetite = magnetite ± maghemite, MM 36, 1154 (1968). magic Arab diamond = corundum, László 96 (1995). magic cross = twinned cross-formed staurolite, Bukanov 217 (2006). magic rainbow diamond = synthetic rutile, Bukanov 212 (2006). magic stone = opal-A or staurolite or obsidian, Bukanov 151, 217, 308 (2006). mágikus arabgyémánt = corundum, László 96 (1995). magistrettiite-(Y) = U-free mckelveyite-(Y)-2M, LAP 32(9), 47 (2007). Magnalit = montmorillonite + saponite, AM 8, 188 (1923). Magnalumoid = Fe-rich spinel, MM 30, 739 (1955). magnalumoxide = Fe-rich spinel, AM 39, 405 (1954). Magnalumoxyd = Fe-rich spinel, Chudoba EII; 228, 583 (1958). magnatis = magnetite, Bukanov 75 (2006). magnatite = magnetite, AM 44, 543 (1959). magneetkies = pyrrhotite, Zirlin 96 (1981). Magneferrit = magnesioferrite, Dana 6th, 226 (1892). magnélite = zoisite or epidote + albite, Clark 415 (1993). magnélithe = zoisite or epidote + albite, Egleston 301 (1892). magnes = magnetite, Dana 6th, 224 (1892). magnesferrite = magnesioferrite, Clark 417 (1993). magnesia, native (Thomson) = magnesite, Egleston 197 (1892). Magnesia (Wallerius) = pyrolusite, Dana 6th, 243 (1892). Magnesiaalaun = pickeringite, Doelter IV.2, 523 (1927). magnesia alba = hydromagnesite, Dana 6th, 304 (1892). magnesia alum = pickeringite, Dana 6th, 953 (1892). magnesia-alumina garnet = pyrope, Egleston 133 (1892). magnesia-arfvedsonite = magnesio-arfvedsonite, AM 63, 1051 (1978). magnesia-blythite = Mn-rich pyrope, MM 21, 570 (1928). magnesia borate = boracite, Egleston 196 (1892). magnesia carbonate = magnesite, Egleston 196 (1892). magnesia carbonica = hydromagnesite, Linck I.3, 3516 (1929). magnesia chalcanthite = Mg-rich chalcanthite, Clark 415 (1993). Magnesiachalkanthit = Mg-rich chalcanthite, Chudoba EII, 755 (1959). magnesia chloride = carnallite or chloromagnesite (bischofite ?) or tachyhydrite, Egleston 69, 81, 336 (1892). magnesia clorurada = bischofite, de Fourestier 204 (1999). magnesia-cordierite = cordierite, MM 24, 616 (1937). Magnesia der Glasmacher = romanèchite, Linck I.3, 3606 (1929). Magnesia-Eisen-Glimmer = biotite, Hintze II, 539 (1891). Magnesiaeisentongranat = pyrope, Doelter IV.3, 1142 (1931); [II.2,602]. magnesia fluophosphate = wagnerite, Egleston 196 (1892). magnesia fluosilicate = chondrodite, Egleston 196 (1892). magnesia friabilis terriformis = wad (pyrolusite ± manganite ± romanèchite ± cryptomelane), Dana 6th, 257 (1892). magnesia fuliginosa = manganite or pyrolusite, de Fourestier 204 (1999). magnesia garnet = pyrope, Egleston 133 (1892). Magnesiaglimmer = phlogopite, Hintze II, 524 (1891). magnesia-goslarite = Mg-rich goslarite, AM 23, 175 (1938). magnesia-gralmandite = Mg-Fe2+-rich grossular or Ca-rich almandine, MM 25, 636 (1940). magnesia hornblende = tremolite, Bukanov 252 (2006). Magnesia-Hydrat = brucite, Dana 6th, 252 (1892). magnesia hydrocarbonate = hydromagnesite, Egleston 160 (1892). magnesia hydrocarbonica = hydromagnesite, Linck I.3, 3516 (1929). magnesia idocrase = vesuvianite,
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Holdawayite Mn (CO3)
    2+ Holdawayite Mn6 (CO3)2(OH)7(Cl, OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Fibrous along [001]; commonly in granular aggregates, or massive, with individual grains to 2 cm. Physical Properties: Cleavage: On {100}, perfect. Fracture: Irregular. Tenacity: Moderately brittle. Hardness = ∼3 D(meas.) = 3.19(4) D(calc.) = 3.24 Optical Properties: Transparent to translucent. Color: Pale to dark pink if fresh, turning brown on exposure, developing a dark sooty coating. Streak: Pale pink. Luster: Vitreous, silky in fibrous aggregates. Optical Class: Biaxial (–). Orientation: X = b; Z ∧ c = 45(3)◦. Dispersion: r< v,moderate. α = 1.644(1) β = 1.719(1) γ = 1.721(1) 2V(meas.) = 12(3)◦ 2V(calc.) = 18◦ Cell Data: Space Group: C2/m. a = 23.437(5) b = 3.3137(3) c = 16.618(6) β = 111.15(2)◦ Z=4 X-ray Powder Pattern: Kombat mine, Namibia. 10.93 (100), 5.459 (80), 3.879 (70), 2.690 (60b), 2.589 (50b), 7.77 (40), 2.926 (40) Chemistry: (1) CO2 14.2 B2O3 1.2 FeO 0.2 MnO 64.6 MgO 4.4 CaO 0.5 Cl 4.4 H2O 11.47 −O=Cl2 1.0 Total 100.0 (1) Kombat mine, Namibia; by electron microprobe, C by Leco analyzer, H2O by the Penfield method, B may be due to sussexite contamination; corresponds to (Mn5.24Mg0.62 Ca0.06Fe0.02)Σ=5.94[(CO3)1.86(BO3)0.20]Σ=2.06[(OH)7.34Cl0.74]Σ=8.08. Occurrence: Locally abundant as a rare vein mineral in low-grade metamorphosed Mn-rich sedimentary rocks intercalated with sedimentary iron deposits.
    [Show full text]
  • Sussexite Mn2+BO2(OH)
    2+ Sussexite Mn BO2(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As bladed acicular crystals, to 7 mm; cross-vein or radial fibrous, in felted or matted aggregates, nodular. Twinning: Submicroscopic twinning on {100} which cannot be resolved optically. Physical Properties: Tenacity: Inflexible. Hardness = 3–3.5 D(meas.) = 3.30 D(calc.) = 3.335 Optical Properties: Semitransparent. Color: White to buff, straw-yellow, pale pink; colorless in transmitted light. Streak: White. Luster: Silky, dull, earthy. Optical Class: Biaxial (–). Orientation: Parallel extinction; X = elongation; Z ⊥ flattening. Dispersion: r> v. α= 1.670 β = 1.728 γ = 1.732 2V(meas.) = ∼25◦ Cell Data: Space Group: P 21/a. a = 12.866(3) b = 10.718(2) c = 3.287(1) β =94.75(3)◦ Z=8 X-ray Powder Pattern: N’chwaning II mine, South Africa. 6.43 (10), 2.773 (7), 3.34 (6), 2.632 (6), 2.494 (6), 2.741 (5), 2.694 (5) Chemistry: (1) (3) B2O3 30.52 30.33 FeO 0.16 MnO 49.40 61.82 MgO 9.56 CaO 2.03 H2O 8.33 7.85 Total [100.00] 100.00 (1) Franklin, New Jersey, USA; recalculated to 100% after deduction of willemite 4.5%. (2) N’chwaning II mine, South Africa; by electron microprobe, analysis not given; stated to correspond to (Mn0.95Mg0.05)Σ=1.00BO2(OH). (3) MnBO2(OH). Polymorphism & Series: Forms a series with szaib´elyite. Occurrence: A rare hydrothermal mineral typically in veinlets in boron-bearing metamorphosed Mn–Fe–Zn deposits.
    [Show full text]
  • Subject Index, Volume 81, 1996
    American Mineralogist, Volume 81, pages 1543-1551, 1996 SUBJECT INDEX, VOLUME 81, 1996 Ag3TeS 1013 geikielite 485 florencite-(La) 1263 4°Ar 940 hornblende 928 glass 229 AuO(OH) 1282 hyttsj6ite 743 granitic melt 202 AuO(OH,Cl)onH20 766 kalsilite 561, 1360 kaolin 26 Achtarandite 516 kaolinite 26 migmatite 141 Afghanite 1003 kinoshitalite 485 orendite 229 Albite 92, 452, 789, 1133, 1344, laumontite 658 peridotite 79 1413 leonhardite 658, 668 rhyolite 158 Alkali feldspar 92, 719, 800, 1425 liandratite 1237 rhyolitic glass 158, 1249 Almandine 418 magnesiochromite 1186 sandstone 213 Altisite 516 magnesite 181 serpentinite 79 Aluminate sodalite 1375 medenbachite 505 volcanic glass 1176 Aluminosilicate glasses 265 muscovite 141, 1460 volcanic rocks 982 Alumoklyuchevskite 249 namuwite 238 Analysis, surface (mineral) Amphibole 135, 495, 1126 nanpingite 105 calcite 1 Analcime 39 nepheline 561, 1360 pyrite 261 Analysis, chemical (mineral) olivine 194, 1519 Anatexis 141 albite 92 omphacite 181 Androsite-(La) 735 alkali feldspar 719 orthopyroxene 676, 842 Ankerite 1141 almandine 418 pentlandite 187 Annite 475 amphibole 135, 495 phlogopite 202, 485,913 Annite-sanidine-magnetite 415 androsite-(La) 735 pigeonite 1166 Anorthoclase 1332 apatite 515 plagioclase 141, 913, 982, 1460 Antimonselite 1013 augite 1166 potassium feldspar 141 Antitaenite 766 bechererite 244 pumpellyite 603 Apatite 864, 1476 betafite 1237 pyralspitic garnet 418 Aragonite 181, 611 biopyribole 404 pyrite 119, 187 Arsenogorceixite 249 biotite 135, 141, 495, 1396, pyrope 418, 706 Asteroid
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Franklin, Fluorescent Mineral Capital of the World
    FRANKLIN, FLUORESCENT MINERAL CAPITAL OF THE WORLD © Spex Industries, Inc. 1981 by R.W. )ones, Jr. 3520 N. Rose Circle Dr., Scottsdale, AZ 85251 Tell people that Franklin, New Jersey is lots. In the hustle and bustle of their daily The deposit has yielded close to 300 noted throughout the world for its myriad lives, people tend to forget New Jersey's different minerals, a number vastly fluorescent minerals and your reward is natural endowments: the rich farmlands greater than from any other known source likely to be a blank stare. Tell them that of the south, t he rolling forest and grazing in the world. More amazing, nearly 60 of Franklin, along with neighboring Ogdens­ lands of the northwest, the manicured these minerals exhibit luminescence, in burg, is the home of a truly unique metal lawns and rich green golf courses of its the form of almost instantaneous fluores­ deposit and boredom sets in for sure. But suburbs, and the unique zinc-manganese- cence or as days long persistent take them for a walk on a dark night iron deposits of Franklin and Sterling Hill phosphorescence. across the waste rock dumps atop this ore Maybe for two or three weeks of t he deposit and they begin to act strangely. su mmer people forego the turmoil and The luminescence of many Frankl in Like children in a candy shop, they're cavort on ocean beaches or bask in the species explains the strange behavior intrigued, captivated by the multi-hued glory of a sun-dappled lake. But to accept noted among miners and mineral colors of these chameleon rocks.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
    THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite ..........................................
    [Show full text]
  • First Annual Mineralogy Exhibit of the Franklin Kiwanis Club
    FIRST ANNUAL MINERALCGY EXHIBIT CF THE FRANKLIN KIWANIS CLUB - October 26th & 27th, 1957 This exhibit makes available for public view for the first time many of the principal private collections of the unique minerals of the Franklin-Sterling Area. These unusual ore bodies, comprising more minerals than are found anywhere else on earth, have intrigued mineralogists and collectors ever since their discovery. Dutch mining experts first explored the area in 1640. The ore bodies, whose principal metals are zinc, manganese and iron, continued to puzzle experts for the next two centuries. Mining operations were first successfully developed by The New Jersey Zinc Company, which succeeded in building a great industry from its beginnings at Franklin. The deposits at Franklin are now exhausted and its specimens have become collectors items. The 178 minerals found at Franklin-Sterling and the 29 minerals which have never been found elsewhere are listed below. MINERALS OF THE FRANKLIN-STERLING AREA Agurite Calcium, Lar- Halloysite Nasonite Albite senite Hancockite Ne oto c it e Allactite Celestite Hardystonite Niccolite Allanite Cerusite Hedyphane. Norbergite Amphibole Chalcocite Hematite Oligocase Actinolite Chalcophanite Hetacrolite Pararammels- Crocidolite Chalcopyrite Heulandite. ' bergite Cummingtonite Chleanthite Hodgkinsonite Pectolite Edenite Chlorite Holdenite Phlogopite Hastingsite Chlorophoenicite Hortonolite Prehnite Hornblende Magnesium Chl. Hyalophane Psilomelane Pargasite Chondrocite Hydrohans- Pyrite Tremolite Clinohedrite mannite
    [Show full text]
  • Fourth Annual Mineralogy Exhibit of the Franklin Kiwanis Club
    FOURTH ANNUAL MINERALOGY EXHIBIT OF THE KIWANTS CLUB Sept, 24 & 25, 1960 di„s'-)lays to the mineral nollecting public a great variety of secimens from the acted Franklin and Sterling Lill mines. Although the Franklin mine is worked out and flooded and the Sterling Hill mine is currently shut down, specimens new to the list of Franklin area minerals are being discovered at a rate never achieved in the past fifty years. Since the first Kiwanis exhibit in 1957, an upsurge of interest has resulted- in the addition of well over a dozen minerals te the list. Many specimens have been made available through sale, and the Buckwheat and Parker dumps continue to reward careful examination on the part of the collector. The visitors should not fail to see the displays at the National Guard Armory at the junction of Route 23 and 577 at the foot of the mountain, where the main mineral exhibit will be housed, the model mine opposite the open cut on Evans Street above the Buckwheat dump, and the Buckwheat Dump itself where the knowledgeable collector can find twenty different minerals in less than an hour. MINERALS OF THE FRANKLIN-STERLING AREA Albite Brucite, Mangan- Ganophyllite Allactite brucite Garnet, Allanite Bustamite Almandite Amphibole Cahnite Andradite A ctinolite Calamine Grossularite Crocidolite Calcite Gersdorfite Cummingtonite Calcium lar- Glaucochroite Edenite senite Goethite Hastingsite Celestite Gold Hornblende Cerussite Graphite Pargasite Chalcocite Greenockite Tremolite Chalcophanite Gypsum Analcime Chalcopyrite Halloysite Angle site
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 94, pages 399–408, 2009 New Mineral Names* GLENN POIRIER,1 T. SCOTT ERCIT ,1 KIMBERLY T. TAIT ,2 PAULA C. PIILONEN ,1,† AND RALPH ROWE 1 1Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada 2Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada ALLORIITE * epidote, magnetite, hematite, chalcopyrite, bornite, and cobaltite. R.K. Rastsvetaeva, A.G. Ivanova, N.V. Chukanov, and I.A. Chloro-potassichastingsite is semi-transparent dark green with a Verin (2007) Crystal structure of alloriite. Dokl. Akad. Nauk, greenish-gray streak and vitreous luster. The mineral is brittle with 415(2), 242–246 (in Russian); Dokl. Earth Sci., 415, 815–819 perfect {110} cleavage and stepped fracture. H = 5, mean VHN20 2 3 (in English). = 839 kg/mm , Dobs = 3.52(1), Dcalc = 3.53 g/cm . Biaxial (–) and strongly pleochroic with α = 1.728(2) (pale orange-yellow), β = Single-crystal X-ray structure refinement of alloriite, a member 1.749(5) (dark blue-green), γ = 1.751(2) (dark green-blue), 2V = of the cancrinite-sodalite group from the Sabatino volcanic complex, 15(5)°, positive sign of elongation, optic-axis dispersion r > v, Latium, Italy, gives a = 12.892(3), c = 21.340(5) Å, space group orientation Y = b, Z ^ c = 11°. Analysis by electron microprobe, wet chemistry (Fe2+:Fe3+) P31c, Raniso = 0.052 [3040 F > 6σ(F), MoKα], empirical formula and the Penfield method (H2O) gave: Na2O 1.07, K2O 3.04, Na18.4K6Ca4.8[(Si6.6Al5.4)4O96][SO4]4.8Cl0.8(CO3)x(H2O)y, crystal- CaO 10.72, MgO 2.91, MnO 0.40, FeO 23.48, Fe2O3 7.80, chemical formula {Si26Al22O96}{(Na3.54Ca0.46) [(H2O)3.54(OH)0.46]} + Al2O3 11.13, SiO2 35.62, TiO2 0.43, F 0.14, Cl 4.68, H2O 0.54, {(Na16.85K6Ca1.15)[(SO4)4(SO3,CO3)2]}{Ca4[(OH)1.6Cl0.4]} (Z = 1).
    [Show full text]