Hardware Synthesis from a Stream-Processing Functional Language

Total Page:16

File Type:pdf, Size:1020Kb

Hardware Synthesis from a Stream-Processing Functional Language Hardware Synthesis from a Stream-Processing Functional Language Simon Frankau St. John's College A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge Copyright c July 2004 Simon Frankau ii Author Publications and Statement of Originality The research presented in this thesis has also been published in the following papers: [52] FRANKAU, S., AND MYCROFT, A., AND MOORE, S. Statically-allocated languages for hard- ware stream processing (extended abstract). In Proceedings of UK ACM SIGDA Workshop on Elec- tronic Design Automation, 2002. [51] FRANKAU, S., AND MYCROFT, A. Stream Processing Hardware from Functional Language Specifications. In Proceedings of the 36th Annual Hawaii International Conference on System Sci- ences (HICSS), 2003. Chapter 2 closely follows a publication [51] co-authored with Dr. Alan Mycroft. The presentation here of that work is entirely mine. Other chapters are are my own work. The thesis is not substantially the same as any that I have submitted for any other qualification at any other University. Signed, Simon Frankau, July 2004. iii iv Abstract As hardware designs grow exponentially larger, there is an increasing challenge to use transistor budgets effectively. Without higher-level synthesis tools, so much effort may be spent on low-level details that it becomes impractical to efficiently design circuits of the size that can be fabricated. This possibility of a design gap has been documented for some time now. One solution is the use of domain-specific languages. This thesis covers the use of software-like languages to describe algorithms that are to be implemented in hardware. Hardware engineers can use the tools to improve their productivity and effectiveness in this particular domain. Software engineers can also use this approach to benefit from the parallelism available in modern hardware (such as reconfigurable systems and FPGAs), while retaining the convenience of a software description. In this thesis a statically-allocated pure functional language, SASL, is introduced. Static alloca- tion makes the language suited to implementation in fixed hardware resources. The I/O model is based on streams (linear lazy lists), and implicit parallelism is used in order to maintain a software- like approach. The thesis contributes constraints which allow the language to be statically-allocated, and synthesis techniques for SASL targeting both basic CSP and a graph-based target that may be compiled to a register-transfer level (RTL) description. Further chapters examine the optimisation of the language, including the use of lenient evaluation to increase parallelism, the introduction of closures and general lazy evaluation, and the use of non- determinism in the language. The extensions are examined in terms of the restrictions required to ensure static allocation, and the techniques required to synthesise them. v vi Acknowledgements I would like to thank my supervisors, Simon Moore and Alan Mycroft, without whose advice and in- sight this thesis would not have been written. I also gratefully acknowledge Altera for the studentship they generously provided. Thanks to all my fellow students, for making the Computer Laboratory such an enjoyable and interesting place to (attempt to) work. Also, thanks to my family and house-mates, who have been highly supportive. This thesis is dedicated to the memory of my mother, Patricia. vii viii Contents 1 Introduction and Related Work 1 1.1 The Need for High-Level HDLs . 2 1.1.1 A Brief History of HDLs . 3 1.1.2 A Comparison to Software Languages . 5 1.1.3 Modern Hardware Development . 6 1.1.4 Runtime Reconfigurable Systems . 7 1.2 The Hardware Description Language Space . 9 1.2.1 Language Assumptions . 9 1.2.2 Example Languages . 10 1.3 The Statically-Allocated Stream Language . 14 1.3.1 SASL's Niche . 14 1.3.2 Functional Languages . 15 1.3.3 Static Allocation . 17 1.3.4 Static Allocation of Functional Languages . 17 1.3.5 SASL's I/O Model . 18 1.3.6 A Comparison to Other Languages . 19 1.4 Thesis Contributions and Organisation . 20 2 The SASL Language 23 2.1 The Motivation: SAFL and SAFL+ . 23 2.1.1 The SAFL Language . 23 2.1.2 SAFL+: An Attempt to Improve I/O . 24 2.1.3 Functional I/O . 25 2.2 Other Related Work . 27 2.3 A Na¨ıve Stream Processing Language . 29 2.3.1 The Stream-less Language . 29 2.3.2 Stream-processing extensions . 30 ix x CONTENTS 2.3.3 Problems raised . 31 2.4 Restrictions for Static Allocation . 31 2.4.1 The stratified type system . 32 2.4.2 Linearity . 33 2.4.3 Stability . 35 2.4.4 Static Allocation . 37 2.4.5 Example Programs . 37 2.5 SASL Semantics . 37 2.6 Deforestation . 38 2.7 A Comparison to SAFL+ and Synchronous Dataflow . 40 2.7.1 SAFL+ . 40 2.7.2 Lustre . 41 2.8 Summary . 45 3 Translation to CSP 47 3.1 Synthesis Aims . 47 3.2 Synthesis Outline and Function Interfacing . 49 3.3 Variable access . 51 3.3.1 Broadcast variables . 51 3.3.2 Unicast variables . 52 3.3.3 Stream Variable Access . 52 3.4 CSP Synthesis . 55 3.4.1 Non-stream CSP Synthesis . 55 3.4.2 Stream CSP Synthesis . 56 3.5 Summary . 60 4 Dataflow Graph Translation 61 4.1 Pipelining SASL . 62 4.2 Dataflow Graph Generation . 65 4.2.1 Translation to Linear SASL . 67 4.2.2 Translation to Dataflow Graph . 69 4.2.3 Graph Properties . 72 4.2.4 Node Implementation . 73 4.2.5 Other Dataflow Architectures . 76 4.3 The Control/Dataflow Graph . 76 4.3.1 Removing CONS-enclosed Tail Recursion . 77 4.3.2 Removing Direct Tail Recursion . 79 4.3.3 Node Implementation . 81 4.4 Extracting stream buses . 84 4.4.1 Stream Buses . 84 4.4.2 Stream Bus Typing . 85 CONTENTS xi 4.4.3 Typing Implementation . 87 4.4.4 Typing Examples . 87 4.4.5 Representing Stream Buses . 88 4.4.6 Managing Stream Buses . 91 4.4.7 Node Implementation . 95 4.5 Summary . 97 5 Optimisation 99 5.1 Static Scheduling . 99 5.1.1 The Problem . 100 5.1.2 ASAP and ALAP Scheduling . 101 5.2 Lenient Evaluation . 105 5.2.1 Signalling on Lenient Streams: The “Push” Model . 106 5.2.2 Cancelling Lenient Evaluation . 107 5.2.3 Basic Lenient Evaluation . 109 5.2.4 Lenient Evaluation with a Stream Bus Controller . 109 5.2.5 Changing the Evaluation Model: Lazy Tail Matching . 112 5.2.6 Rearranging Graphs for Lazy Tail Evaluation . 114 5.3 Program Transformation . 117 5.3.1 Enabling Graph Optimisations . 117 5.3.2 Peep-hole Optimisation . 120 5.3.3 Flattening Conditionals . 123 5.3.4 Removing Conditional Nodes . 126 5.3.5 Unrolling Loops . 126 5.4 Summary . 126 6 Closures and Statically-Allocated Laziness 129 6.1 Higher-order Functions as Macros . 129 6.1.1 Nested Function Definitions . 130 6.1.2 Lazily-Evaluated Closures . 132 6.2 Leniently-evaluated Expressions . 133 6.3 Statically-Allocated Laziness . 137 6.4 Summary . ..
Recommended publications
  • Switching Theory for Logic Synthesis Ad Hoc Wireless Networking Data
    COMMUNICATION ENGINEERING & SIGNAL PROCESSING Switching Theory for Logic Synthesis Tsutomu Sasao Contents: 1. Mathematical Foundation. 2. Lattice and Boolean Algebra. 3. Logic Functions and their Representations 4. Optimization of and-or Two-level Logic Networks. 5. Logic Functions with Various Properties. 6. Sequential Networks. 7. Optimization of Sequential Networks. 8. Delay and Asynchronous Behavior. 9. Multi-valued Input Two-valued Output Function. 10. Heuristic Optimization of Two- level Networks. 11. Multi-level Logic Synthesis. 12. Logic Design Using Modules. 13. Logic Design Using EXORs. 14. Complexity of Logic Networks Rpt. 2011 379 pp 978-81-84898-02-6 BSPSPR Rs. 595.00 Ad Hoc Wireless Networking For New Arrivals visit Cheng Contents: 1. Introduction 2. Related Work 3. Formulation of Power-aware Routing 4. Online Power-aware Routing with max-min zPmin 5. Hierarchical Routing with max-min zPmin 6. Distributed Routing with max-min zPmin Rpt. 2011 630 pp 978-81-84898-48-4 BSPSPR Rs. 650.00 Communications Satellite Handbook : Walter L. Morgan, Gary D. Gordon www.bspbooks.net / www.bspublications.net Contents: 1. Obtaining Access to the Satellite 2. TELETRAFFIC 3. Interfaces Between Terrestrial and Satellite Systems 4. Telecommunications Systems 5. COMMUNICATIONS SATELLITE SYSTEMS 6. System Modeling 7. Overall System Calculations 8. MULTIPLE-ACCESS TECHNIQUES 9. Frequency Domain Multiple Access 10. Time Domain Multiple Access 11. Space Domain Multiple Access 12. Code Domain Multiple Access 13. Random Multiple Access 14. SPACECRAFT TECHNOLOGY 15. Space Configuration and Subsystems 16. Telemetry, Tracking, and Command 17. Solar Arrays 18. Attitude Control 19. Thermal Control 20. SATELLITE ORBITS 21. Direction of Orbit Normals and of Sun 22.
    [Show full text]
  • Reconfigurable Computing
    Reconfigurable Computing: A Survey of Systems and Software KATHERINE COMPTON Northwestern University AND SCOTT HAUCK University of Washington Due to its potential to greatly accelerate a wide variety of applications, reconfigurable computing has become a subject of a great deal of research. Its key feature is the ability to perform computations in hardware to increase performance, while retaining much of the flexibility of a software solution. In this survey, we explore the hardware aspects of reconfigurable computing machines, from single chip architectures to multi-chip systems, including internal structures and external coupling. We also focus on the software that targets these machines, such as compilation tools that map high-level algorithms directly to the reconfigurable substrate. Finally, we consider the issues involved in run-time reconfigurable systems, which reuse the configurable hardware during program execution. Categories and Subject Descriptors: A.1 [Introductory and Survey]; B.6.1 [Logic Design]: Design Style—logic arrays; B.6.3 [Logic Design]: Design Aids; B.7.1 [Integrated Circuits]: Types and Design Styles—gate arrays General Terms: Design, Performance Additional Key Words and Phrases: Automatic design, field-programmable, FPGA, manual design, reconfigurable architectures, reconfigurable computing, reconfigurable systems 1. INTRODUCTION of algorithms. The first is to use hard- wired technology, either an Application There are two primary methods in con- Specific Integrated Circuit (ASIC) or a ventional computing for the execution group of individual components forming a This research was supported in part by Motorola, Inc., DARPA, and NSF. K. Compton was supported by an NSF fellowship. S. Hauck was supported in part by an NSF CAREER award and a Sloan Research Fellowship.
    [Show full text]
  • Reconfigurable Computing
    Reconfigurable computing: architectures and design methods T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk and P.Y.K. Cheung Abstract: Reconfigurable computing is becoming increasingly attractive for many applications. This survey covers two aspects of reconfigurable computing: architectures and design methods. The paper includes recent advances in reconfigurable architectures, such as the Alters Stratix II and Xilinx Virtex 4 FPGA devices. The authors identify major trends in general-purpose and special- purpose design methods. It is shown that reconfigurable computing designs are capable of achieving up to 500 times speedup and 70% energy savings over microprocessor implementations for specific applications. 1 Introduction Recent research suggests that it is a trend rather than a one-off for a wide variety of applications: from image Reconfigurable computing is rapidly establishing itself as a processing [3] to floating-point operations [4]. major discipline that covers various subjects of learning, Sheer speed, while important, is not the only strength of including both computing science and electronic engineer- reconfigurable computing. Another compelling advantage is ing. Reconfigurable computing involves the use of reduced energy and power consumption. In a reconfigurable reconfigurable devices, such as field programmable gate system, the circuitry is optimised for the application, such arrays (FPGAs), for computing purposes. Reconfigurable that the power consumption will tend to be much lower than computing is also known as configurable computing or that for a general-purpose processor. A recent study [5] custom computing, since many of the design techniques can reports that moving critical software loops to reconfigurable be seen as customising a computational fabric for specific hardware results in average energy savings of 35% to 70% applications [1].
    [Show full text]
  • The Paramountcy of Reconfigurable Computing
    Energy Efficient Distributed Computing Systems, Edited by Albert Y. Zomaya, Young Choon Lee. ISBN 978-0-471--90875-4 Copyright © 2012 Wiley, Inc. Chapter 18 The Paramountcy of Reconfigurable Computing Reiner Hartenstein Abstract. Computers are very important for all of us. But brute force disruptive architectural develop- ments in industry and threatening unaffordable operation cost by excessive power consumption are a mas- sive future survival problem for our existing cyber infrastructures, which we must not surrender. The pro- gress of performance in high performance computing (HPC) has stalled because of the „programming wall“ caused by lacking scalability of parallelism. This chapter shows that Reconfigurable Computing is the sil- ver bullet to obtain massively better energy efficiency as well as much better performance, also by the up- coming methodology of HPRC (high performance reconfigurable computing). We need a massive cam- paign for migration of software over to configware. Also because of the multicore parallelism dilemma, we anyway need to redefine programmer education. The impact is a fascinating challenge to reach new hori- zons of research in computer science. We need a new generation of talented innovative scientists and engi- neers to start the beginning second history of computing. This paper introduces a new world model. 18.1 Introduction In Reconfigurable Computing, e. g. by FPGA (Table 15), practically everything can be implemented which is running on traditional computing platforms. For instance, recently the historical Cray 1 supercomputer has been reproduced cycle-accurate binary-compatible using a single Xilinx Spartan-3E 1600 development board running at 33 MHz (the original Cray ran at 80 MHz) 0.
    [Show full text]
  • Efpgas : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed
    eFPGAs : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed To cite this version: Syed Zahid Ahmed. eFPGAs : Architectural Explorations, System Integration & a Visionary Indus- trial Survey of Programmable Technologies. Micro and nanotechnologies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2011. English. tel-00624418 HAL Id: tel-00624418 https://tel.archives-ouvertes.fr/tel-00624418 Submitted on 16 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Montpellier 2 (UM2) École Doctorale I2S LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) Domain: Microelectronics PhD thesis report for partial fulfillment of requirements of Doctorate degree of UM2 Thesis conducted in French Industrial PhD (CIFRE) framework between: Menta & LIRMM lab (Dec.2007 – Feb. 2011) in Montpellier, FRANCE “eFPGAs: Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies” eFPGAs: Explorations architecturales, integration système, et une enquête visionnaire industriel des technologies programmable by Syed Zahid AHMED Presented and defended publically on: 22 June 2011 Jury: Mr. Guy GOGNIAT Prof. at STICC/UBS (Lorient, FRANCE) President Mr. Habib MEHREZ Prof. at LIP6/UPMC (Paris, FRANCE) Reviewer Mr.
    [Show full text]
  • [email protected]
    Reiner Hartenstein, University of Kaiserslautern, Germany [email protected] http://hartenstein.de viewgraph downloading: link found in 60 Semester Informatik I http://kressarray.de Kritik an der Praktischen Informatik Xputer Lab University of Kaiserslautern (in der Lehre) Festkolloquium Universität Dortmund, 18. – 19. Juli 2002 • mißbraucht ihre Zweidrittel-Mehrheit • hält die Prägungsphase strikt „procedural-only“ • Absolventen sind daher völlig unvorbereitet für Reiner Hartenstein die nahe Zukunft Data-Stream-based Computing: Universität – Wo >90% der Anwendungen für eingebettete Kaiserslautern Antimaterie der Kern-Informatik Systeme implementiert werden – Wie für 2010 vorhergesagt • nur wenige % des Kurrikulum wären zu ändern • meine Mission: Sie hierfür zu gewinnen © 2002, [email protected] 2 http://KressArray.de Kritik an der Technischen Informatik, TI die Kern-Informatik: jung ? dynamisch ? University of Kaiserslautern (klassischer Art) University of Kaiserslautern .. ist nach >10 Technologie-Generationen ... • diese ist noch immer weit verbreitet das von Neumann Paradigma .... • keine Vorbereitung auf die heutige Arbeitswelt • 1th 4004 ... der vN Mikroprozessor • 2nd 8008 ... noch immer ist ein Methusalem ... • Indizien: Begriffe wie „Rechnerorganisation“, • 3rd 8086 die vorherrschende „Rechnerstrukturen, “„Rechnerarchitektur“ • 4th 80286 Doktrin • 5th 80386 ... die Dampfmaschine • vN-only, alles andere wird konsequent verschwiegen • 6th 80486 des Silizium-Zeitalters die Mikroelektronik • 7th P5 (Pentium) • Paradebeispiel:
    [Show full text]
  • EMBEDDED ELECTRONIC SYSTEMS DRIVEN by RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T
    UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 Francisco Fons Lluís EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE DOCTORAL THESIS Supervised by Dr. Enrique F. Cantó Navarro Departament d’Enginyeria Electrònica, Elèctrica i Automàtica Tarragona 2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA DEPARTAMENT D’ENGINYERIA ELECTRÒNICA, ELÈCTRICA I AUTOMÀTICA Avinguda dels Països Catalans, 26 Campus Sescelades 43007 Tarragona – SPAIN Tel. + 34 977 559 610 Fax + 34 977 559 605 e-mail: [email protected] http://sauron.etse.urv.es/DEEEA/ Enrique F. Cantó Navarro, professor at the Department of Electronic, Electrical and Automatic Control Engineering of the University Rovira i Virgili, STATES: That the present thesis, entitled “Embedded electronic systems driven y run-time reconfigurable hardware”, presented by Francisco Fons Lluís for the award of the degree of Doctor, has been carried out under my supervision at the Department of Electronic, Electrical and Automatic Control Engineering of the University Rovira i Virgili. Tarragona, March 2012 Doctoral Thesis Supervisor Dr. Enrique F. Cantó Navarro UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 Abstract Runtime reconfigurable hardware technology has experienced a big progress in the last decade after both academia and industry research communities have jointly got involved in this issue, bringing the necessary talent and energy to definitively put this technology to the service of the society.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,195,856 B2 Vorbach Et Al
    US008195856B2 (12) United States Patent (10) Patent No.: US 8,195,856 B2 Vorbach et al. (45) Date of Patent: Jun. 5, 2012 (54) I/O AND MEMORY BUS SYSTEM FOR DFPS (51) Int. Cl. AND UNITS WITH TWO- OR G06F 5/76 (2006.01) MULT-DIMIENSIONAL PROGRAMMABLE (52) U.S. Cl. ........................... 710/100; 710/316; 712/11 CELL ARCHITECTURES (58) Field of Classification Search .................. 710/100, 710/107, 305: 711/118, 126, 154; 712/10, (76) Inventors: Martin Vorbach, Karlsruhe (DE): 712/11, 16, 17, 32-36 Robert Minch, Karlsruhe (DE) See application file for complete search history. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (56) References Cited U.S.C. 154(b) by 0 days. U.S. PATENT DOCUMENTS (21) Appl. No.: 12/840,742 3,564,506 A 2f1971 Bee et al. 3,681,578 A 8, 1972 Stevens (22) Filed: Jul. 21, 2010 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2010/02873.18A1 Nov. 11, 2010 DE 4221. 278 1, 1994 Related U.S. Application Data (Continued) (63) Continuation of application No. 12/630,139, filed on OTHER PUBLICATIONS Dec. 3, 2009, now Pat. No. 7,899,962, which is a continuation of application No. 12/008.543, filed on Agarwal, A., et al., “APRIL: A Processor Architecture for Multipro Jan. 10, 2008, now Pat. No. 7,650,448, which is a cessing.” Laboratory for Computer Science, MIT, Cambridge, MA, continuation of application No. 1 1/820,943, filed on IEEE 1990, pp. 104-114.
    [Show full text]
  • Coarse Grain Reconfigurable Architectures
    Reiner Hartenstein, Informatik Department, [email protected] University of Kaiserslautern, Germany http://hartenstein.de Enabling Technologies for Reconfigurable Computing Xputer Lab November 21, 2001, Tampere, Finland University of Kaiserslautern Reiner Hartenstein Enabling Technologies for University of Kaiserslautern Reconfigurable Computing 115 Part 4: FPGAs: recent developments Wednesday, November 21, 16.00 – 17.30 hrs. © 2001, [email protected] 2 http://www.fpl.uni-kl.de Schedule Opportunities by new patent laws ? University of Kaiserslautern University of Kaiserslautern time slot • to clever guys being keen on patents: 08.30 – 10.00 Reconfigurable Computing (RC) 10.00 – 10.30 coffee break • don‘t file for patent following details ! 10.30 – 12.00 Compilation Techniques for RC 12.00 – 14.00 lunch break • everything shown in this presentation 14.00 – 15.30 Resources for Stream-based RC has been published years ago 15.30 – 16.00 coffee break 16.00 – 17.30 FPGAs: recent developments © 2001, [email protected] 3 http://www.fpl.uni-kl.de © 2001, [email protected] 4 http://www.fpl.uni-kl.de >> Fine Grain Reconfigurable Circuits >> FPGAs: recent developments University of Kaiserslautern University of Kaiserslautern Fine Grain Reconfigurable Circuits • Embedded Systems (Co-Design) • Reconfigurable Computing (RC) • Hardwired IP Cores on Board • Run-Time Reconfiguration (RTR) • Compilation Techniques for RC • Rapid Prototyping & ASIC Emulation • Resources for Stream-based RC • Testing FPGA-based Systems • Evolvable Hardware (EH) • FPGAs: recent developments • Academic Expertise http://www.uni-kl.de © 2001, [email protected] 5 http://www.fpl.uni-kl.de © 2001, [email protected] 6 http://www.fpl.uni-kl.de Workshop on Enabling Technologies for System-on-Chip Development, November Reconfigurable Computing Architectures 19-20, 2001, Tampere, Finland and Methodologies for System-on-Chip; http://www.cs.tut.fi/soc/ Reiner Hartenstein, Monday, November 19, 10:15 - 11:00 hrs.
    [Show full text]
  • Reconfigurable Computing: Architectures and Design Methods
    1 Reconfigurable Computing: Architectures and Design Methods ∗ ∗∗ ∗∗∗ ∗ ∗ ∗∗ ∗ T.J. Todman , G.A. Constantinides , S.J.E. Wilton , O. Mencer , W. Luk and P.Y.K. Cheung Department of Computing, Imperial College London, UK ∗∗ Department of Electrical and Electronic Engineering, Imperial College London, UK ∗∗∗ Department of Electrical and Computer Engineering, University of British Columbia, Canada Abstract Reconfigurable computing is becoming increasingly attractive for many applications. This survey covers two aspects of reconfigurable computing: architectures and design methods. Our chapter includes recent advances in reconfigurable architectures, such as the Altera Stratix II and Xilinx Virtex 4 FPGA devices. We identify major trends in general-purpose and special-purpose design methods. I. INTRODUCTION Reconfigurable computing is rapidly establishing itself as a major discipline that covers various subjects of learning, including both computing science and electronic engineering. Reconfigurable computing involves the use of reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), for computing purposes. Reconfigurable computing is also known as configurable computing or custom computing, since many of the design techniques can be seen as customising a computational fabric for specific applications [102]. Reconfigurable computing systems often have impressive performance. Consider, as an example, the point multiplication operation in Elliptic Curve cryptography. For a key size of 270 bits, it has been reported [172] that a point multiplication can be computed in 0.36 ms with a reconfigurable computing design implemented in an XC2V6000 FPGA at 66 MHz. In contrast, an optimised software implementation requires 196.71 ms on a dual-Xeon computer at 2.6 GHz; so the reconfigurable computing design is more than 540 times faster, while its clock speed is almost 40 times slower than the Xeon processors.
    [Show full text]
  • Génération Automatique D'extensions De Jeux D'instructions De Processeurs
    Génération automatique d’extensions de jeux d’instructions de processeurs Kevin Martin To cite this version: Kevin Martin. Génération automatique d’extensions de jeux d’instructions de processeurs. Génie logiciel [cs.SE]. Université Rennes 1, 2010. Français. tel-00526133 HAL Id: tel-00526133 https://tel.archives-ouvertes.fr/tel-00526133 Submitted on 13 Oct 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre : 4150 ANNEE´ 2010 THESE` / UNIVERSITE´ DE RENNES 1 sous le sceau de l’Universit´eEurop´eennede Bretagne pour le grade de DOCTEUR DE L’UNIVERSITE´ DE RENNES 1 Mention : Informatique Ecole´ doctorale MATISSE pr´esent´ee par Kevin´ MARTIN pr´epar´ee`al’unit´ede recherche UMR 6074 – Irisa Institut de Recherche en Informatique et Syst`emes Al´eatoires IFSIC Th`ese soutenue `aRennes le 7 septembre 2010 Gen´ eration´ devant le jury compos´ede : automatique Olivier DEFORGES´ Professeur INSA Rennes / pr´esident Daniel ETIEMBLE d’extensions Professeur Universit´eParis Sud 11 / rapporteur de jeux Fred´ eric´ PETROT´ Professeur ENSIMAG / rapporteur Philippe COUSSY d’instructions Maˆıtrede conf´erencesUniversit´eBretagne Sud / examinateur de processeurs Christophe WOLINSKI Professeur Universit´ede Rennes 1 / directeur de th`ese Franc¸ois CHAROT Charg´ede recherche INRIA / co-directeur de th`ese Le temps est assassin et emporte avec lui les rires des enfants Mistral Gagnant Renaud Remerciements Je remercie Olivier D´eforgesqui me fait l’honneur de pr´esiderce jury.
    [Show full text]
  • Coarse Grain Reconfigurable Architectures
    Reiner Hartenstein, University of Kaiserslautern, Germany [email protected] http://kressarray.de Enabling Technologies for Reconfigurable Computing Schedule Xputer Lab July 8, 2002, ENST, Paris, France University of Kaiserslautern time slot xx.30 – xx.00 Reconfigurable Computing (RC) Reiner Hartenstein Enabling Technologies for xx.00 – xx.30 coffee break University of Reconfigurable Computing and Kaiserslautern xx.30 – xx.00 Design / Compilation Techniques Software / Configware Co-Design xx.00 – xx.00 lunch break xx.00 – xx.30 Resources for Data-Stream-based RC Part 4: xx.30 – xx.00 Recent developments coffee break xx.00 – xx.30 FPGAs: recent developments -. © 2002, [email protected] 2 http://kressarray.de Opportunities by new patent laws ? >> Configware Market University of Kaiserslautern University of Kaiserslautern • Configware Market • FPGA Market • to clever guys being keen on patents: • Embedded Systems (Co-Design) • Hardwired IP Cores on Board • Run-Time Reconfiguration (RTR) • don‘t file for patent following details ! • Rapid Prototyping & ASIC Emulation • Evolvable Hardware (EH) • everything shown in this presentation • Academic Expertise • ASICs dead has been published years ago • Soft CPU • HLLs • Problems to be solved © 2002, [email protected] 3 http://kressarray.de © 2002, [email protected] 4 http://kressarray.de Configware heading for mainstream bleeding edge designs University of Kaiserslautern University of Kaiserslautern • Configware market taking off for mainstream • Infinite amount of gates not yet available on a chip • FPGA-based designs more complex, even SoC • 3 mio gates (10 mio in 2003 ?) far away from "infinite" • No design productivity and quality without good configware libraries (soft IP cores) from various • Bleeding edge designs only with sophisticated EDA tools application areas.
    [Show full text]