Reconfigurable Computing

Total Page:16

File Type:pdf, Size:1020Kb

Reconfigurable Computing Reconfigurable Computing: A Survey of Systems and Software KATHERINE COMPTON Northwestern University AND SCOTT HAUCK University of Washington Due to its potential to greatly accelerate a wide variety of applications, reconfigurable computing has become a subject of a great deal of research. Its key feature is the ability to perform computations in hardware to increase performance, while retaining much of the flexibility of a software solution. In this survey, we explore the hardware aspects of reconfigurable computing machines, from single chip architectures to multi-chip systems, including internal structures and external coupling. We also focus on the software that targets these machines, such as compilation tools that map high-level algorithms directly to the reconfigurable substrate. Finally, we consider the issues involved in run-time reconfigurable systems, which reuse the configurable hardware during program execution. Categories and Subject Descriptors: A.1 [Introductory and Survey]; B.6.1 [Logic Design]: Design Style—logic arrays; B.6.3 [Logic Design]: Design Aids; B.7.1 [Integrated Circuits]: Types and Design Styles—gate arrays General Terms: Design, Performance Additional Key Words and Phrases: Automatic design, field-programmable, FPGA, manual design, reconfigurable architectures, reconfigurable computing, reconfigurable systems 1. INTRODUCTION of algorithms. The first is to use hard- wired technology, either an Application There are two primary methods in con- Specific Integrated Circuit (ASIC) or a ventional computing for the execution group of individual components forming a This research was supported in part by Motorola, Inc., DARPA, and NSF. K. Compton was supported by an NSF fellowship. S. Hauck was supported in part by an NSF CAREER award and a Sloan Research Fellowship. Authors’ addresses: K. Compton, Department of Electrical and Computer Engineering, Northwestern Uni- versity, 2145 Sheridan Road, Evanston, IL 60208-3118; e-mail: [email protected]; S. Hauck, De- partment of Electrical Engineering, The University of Washington, Box 352500, Seattle, WA 98195; e-mail: [email protected]. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any compo- nent of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or [email protected]. c 2002 ACM 0360-0300/02/0600-0171 $5.00 ACM Computing Surveys, Vol. 34, No. 2, June 2002, pp. 171–210. 172 K. Compton and S. Hauck board-level solution, to perform the oper- figurable hardware by computing the logic ations in hardware. ASICs are designed functions of the circuit within the logic specifically to perform a given computa- blocks, and using the configurable routing tion, and thus they are very fast and to connect the blocks together to form the efficient when executing the exact com- necessary circuit. putation for which they were designed. FPGAs and reconfigurable computing However, the circuit cannot be altered af- have been shown to accelerate a variety of ter fabrication. This forces a redesign and applications. Data encryption, for exam- refabrication of the chip if any part of its ple, is able to leverage both parallelism circuit requires modification. This is an ex- and fine-grained data manipulation. An pensive process, especially when one con- implementation of the Serpent Block siders the difficulties in replacing ASICs Cipher in the Xilinx Virtex XCV1000 in a large number of deployed systems. shows a throughput increase by a factor Board-level circuits are also somewhat in- of over 18 compared to a Pentium Pro flexible, frequently requiring a board re- PC running at 200 MHz [Elbirt and Paar design and replacement in the event of 2000]. Additionally, a reconfigurable com- changes to the application. puting implementation of sieving for fac- The second method is to use soft- toring large numbers (useful in breaking ware-programmed microprocessors—a far encryption schemes) was accelerated by a more flexible solution. Processors execute factor of 28 over a 200-MHz UltraSparc a set of instructions to perform a compu- workstation [Kim and Mangione-Smith tation. By changing the software instruc- 2000]. The Garp architecture shows a tions, the functionality of the system is comparable speed-up for DES [Hauser altered without changing the hardware. and Wawrzynek 1997], as does an However, the downside of this flexibility FPGA implementation of an elliptic curve is that the performance can suffer, if not cryptography application [Leung et al. in clock speed then in work rate, and is 2000]. far below that of an ASIC. The processor Other recent applications that have must read each instruction from memory, been shown to exhibit significant speed- decode its meaning, and only then exe- ups using reconfigurable hardware cute it. This results in a high execution include: automatic target recognition overhead for each individual operation. [Rencher and Hutchings 1997], string pat- Additionally, the set of instructions that tern matching [Weinhardt and Luk 1999], may be used by a program is determined Golomb Ruler Derivation [Dollas et al. at the fabrication time of the processor. 1998; Sotiriades et al. 2000], transitive Any other operations that are to be im- closure of dynamic graphs [Huelsbergen plemented must be built out of existing 2000], Boolean satisfiability [Zhong et al. instructions. 1998], data compression [Huang et al. Reconfigurable computing is intended to 2000], and genetic algorithms for the tra- fill the gap between hardware and soft- velling salesman problem [Graham and ware, achieving potentially much higher Nelson 1996]. performance than software, while main- In order to achieve these performance taining a higher level of flexibility than benefits, yet support a wide range of appli- hardware. Reconfigurable devices, in- cations, reconfigurable systems are usu- cluding field-programmable gate arrays ally formed with a combination of re- (FPGAs), contain an array of computa- configurable logic and a general-purpose tional elements whose functionality is de- microprocessor. The processor performs termined through multiple programmable the operations that cannot be done effi- configuration bits. These elements, some- ciently in the reconfigurable logic, such times known as logic blocks, are connected as data-dependent control and possibly using a set of routing resources that are memory accesses, while the computational also programmable. In this way, custom cores are mapped to the reconfigurable digital circuits can be mapped to the recon- hardware. This reconfigurable logic can be ACM Computing Surveys, Vol. 34, No. 2, June 2002. Reconfigurable Computing 173 composed of either commercial FPGAs or uration compression and the partial reuse custom configurable hardware. of already programmed configurations can Compilation environments for reconfig- be used to reduce this overhead. urable hardware range from tools to assist This article presents a survey of cur- a programmer in performing a hand map- rent research in hardware and software ping of a circuit to the hardware, to com- systems for reconfigurable computing, as plete automated systems that take a cir- well as techniques that specifically target cuit description in a high-level language run-time reconfigurability. We lead off this to a configuration for a reconfigurable sys- discussion by examining the technology tem. The design process involves first par- required for reconfigurable computing, fol- titioning a program into sections to be im- lowed by a more in-depth examination of plemented on hardware, and those which the various hardware structures used in are to be implemented in software on the reconfigurable systems. Next, we look at host processor. The computations destined the software required for compilation of for the reconfigurable hardware are syn- algorithms to configurable computers, and thesized into a gate level or register trans- the trade-offs between hand-mapping and fer level circuit description. This circuit is automatic compilation. Finally, we discuss mapped onto the logic blocks within the re- run-time reconfigurable systems, which configurable hardware during the technol- further utilize the intrinsic flexibility of ogy mapping phase. These mapped blocks configurable computing platforms by opti- are then placed into the specific physi- mizing the hardware not only for different cal blocks within the hardware, and the applications, but for different operations pieces of the circuit are connected using within a single application as well. the reconfigurable routing. After compi- This survey does not seek to cover ev- lation, the circuit is ready for configura- ery technique and research project in the tion onto the hardware at run-time. These area of reconfigurable computing. Instead, steps, when performed using an automatic it hopes to serve as an introduction to compilation system, require very little ef- this rapidly evolving field, bringing in- fort on the part of the programmer to terested readers
Recommended publications
  • Switching Theory for Logic Synthesis Ad Hoc Wireless Networking Data
    COMMUNICATION ENGINEERING & SIGNAL PROCESSING Switching Theory for Logic Synthesis Tsutomu Sasao Contents: 1. Mathematical Foundation. 2. Lattice and Boolean Algebra. 3. Logic Functions and their Representations 4. Optimization of and-or Two-level Logic Networks. 5. Logic Functions with Various Properties. 6. Sequential Networks. 7. Optimization of Sequential Networks. 8. Delay and Asynchronous Behavior. 9. Multi-valued Input Two-valued Output Function. 10. Heuristic Optimization of Two- level Networks. 11. Multi-level Logic Synthesis. 12. Logic Design Using Modules. 13. Logic Design Using EXORs. 14. Complexity of Logic Networks Rpt. 2011 379 pp 978-81-84898-02-6 BSPSPR Rs. 595.00 Ad Hoc Wireless Networking For New Arrivals visit Cheng Contents: 1. Introduction 2. Related Work 3. Formulation of Power-aware Routing 4. Online Power-aware Routing with max-min zPmin 5. Hierarchical Routing with max-min zPmin 6. Distributed Routing with max-min zPmin Rpt. 2011 630 pp 978-81-84898-48-4 BSPSPR Rs. 650.00 Communications Satellite Handbook : Walter L. Morgan, Gary D. Gordon www.bspbooks.net / www.bspublications.net Contents: 1. Obtaining Access to the Satellite 2. TELETRAFFIC 3. Interfaces Between Terrestrial and Satellite Systems 4. Telecommunications Systems 5. COMMUNICATIONS SATELLITE SYSTEMS 6. System Modeling 7. Overall System Calculations 8. MULTIPLE-ACCESS TECHNIQUES 9. Frequency Domain Multiple Access 10. Time Domain Multiple Access 11. Space Domain Multiple Access 12. Code Domain Multiple Access 13. Random Multiple Access 14. SPACECRAFT TECHNOLOGY 15. Space Configuration and Subsystems 16. Telemetry, Tracking, and Command 17. Solar Arrays 18. Attitude Control 19. Thermal Control 20. SATELLITE ORBITS 21. Direction of Orbit Normals and of Sun 22.
    [Show full text]
  • Syllabus: EEL4930/5934 Reconfigurable Computing
    EEL4720/5721 Reconfigurable Computing (dual-listed course) Department of Electrical and Computer Engineering University of Florida Spring Semester 2019 Catalog Description: Prereq: EEL4712C or EEL5764 or consent of instructor. Fundamental concepts at advanced undergraduate level (EEL4720) and introductory graduate level (EEL5721) in reconfigurable computing (RC) based upon advanced technologies in field-programmable logic devices. Topics include general RC concepts, device architectures, design tools, metrics and kernels, system architectures, and application case studies. Credit Hours: 3 Prerequisites by Topic: Fundamentals of digital design including device technologies, design methodology and techniques, and design environments and tools; fundamentals of computer organization and architecture, including datapath and control structures, data formats, instruction-set principles, pipelining, instruction-level parallelism, memory hierarchy, and interconnects and interfacing. Instructor: Dr. Herman Lam Office: Benton Hall, Room 313 Office hours: TBA Telephone: (352) 392-2689 Email: [email protected] Teaching Assistant: Seyed Hashemi Office hours: TBA Email: [email protected] Class lectures: MWF 4th period, Larsen Hall 239 Required textbook: none References: . Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation, edited by Scott Hauck and Andre DeHon, Elsevier, Inc. (Morgan Kaufmann Publishers), Amsterdam, 2008. ISBN: 978-0-12-370522-8 . C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004, ISBN: 978-0750676045.
    [Show full text]
  • A MATLAB Compiler for Distributed, Heterogeneous, Reconfigurable
    A MATLAB Compiler For Distributed, Heterogeneous, Reconfigurable Computing Systems P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar, P. Joisha, A. Jones, A. Kanhare A. Nayak, S. Periyacheri, M. Walkden, D. Zaretsky Electrical and Computer Engineering Northwestern University 2145 Sheridan Road Evanston, IL-60208 [email protected] Abstract capabilities and are coordinated to perform an application whose subtasks have diverse execution requirements. One Recently, high-level languages such as MATLAB have can visualize such systems to consist of embedded proces- become popular in prototyping algorithms in domains such sors, digital signal processors, specialized chips, and field- as signal and image processing. Many of these applications programmable gate arrays (FPGA) interconnected through whose subtasks have diverse execution requirements, often a high-speed interconnection network; several such systems employ distributed, heterogeneous, reconfigurable systems. have been described in [9]. These systems consist of an interconnected set of heteroge- A key question that needs to be addressed is how to map neous processing resources that provide a variety of archi- a given computation on such a heterogeneous architecture tectural capabilities. The objective of the MATCH (MATlab without expecting the application programmer to get into Compiler for Heterogeneous computing systems) compiler the low level details of the architecture or forcing him/her to project at Northwestern University is to make it easier for understand
    [Show full text]
  • Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems »
    THESE DE DOCTORAT DE L’UNIVERSITÉ BRETAGNE SUD COMUE UNIVERSITE BRETAGNE LOIRE ÉCOLE DOCTORALE N° 601 Mathématiques et Sciences et Technologies de l'Information et de la Communication Spécialité : Électronique Par « Satyajit DAS » « Architecture and Programming Model Support For Reconfigurable Accelerators in Multi-Core Embedded Systems » Thèse présentée et soutenue à Lorient, le 4 juin 2018 Unité de recherche : Lab-STICC Thèse N° : 491 Rapporteurs avant soutenance : Composition du Jury : Michael HÜBNER Professeur, Ruhr-Universität François PÊCHEUX Professeur, Sorbonne Université Bochum Président (à préciser après la soutenance) Jari NURMI Professeur, Tampere University of Angeliki KRITIKAKOU Maître de conférences, Université Technology Rennes 1 Davide ROSSI Assistant professor, Université de Bologna Kevin MARTIN Maître de conférences, Université Bretagne Sud Directeur de thèse Philippe COUSSY Professeur, Université Bretagne Sud Co-directeur de thèse Luca BENINI Professeur, Université de Bologna Architecture and Programming Model Support for Reconfigurable Accelerators in Multi-Core Embedded Systems Satyajit Das 2018 iii ABSTRACT Emerging trends in embedded systems and applications need high throughput and low power consumption. Due to the increasing demand for low power computing, and diminishing returns from technology scaling, industry and academia are turning with renewed interest toward energy efficient hardware accelerators. The main drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function and increasing the number of the accelerators in a system onchip (SoC) causes scalability issues. Programmable accelerators provide flexibility and solve the scalability issues. Coarse-Grained Reconfigurable Array (CGRA) architecture consisting several processing elements with word level granularity is a promising choice for programmable accelerator.
    [Show full text]
  • Reconfigurable Computing
    Reconfigurable computing: architectures and design methods T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk and P.Y.K. Cheung Abstract: Reconfigurable computing is becoming increasingly attractive for many applications. This survey covers two aspects of reconfigurable computing: architectures and design methods. The paper includes recent advances in reconfigurable architectures, such as the Alters Stratix II and Xilinx Virtex 4 FPGA devices. The authors identify major trends in general-purpose and special- purpose design methods. It is shown that reconfigurable computing designs are capable of achieving up to 500 times speedup and 70% energy savings over microprocessor implementations for specific applications. 1 Introduction Recent research suggests that it is a trend rather than a one-off for a wide variety of applications: from image Reconfigurable computing is rapidly establishing itself as a processing [3] to floating-point operations [4]. major discipline that covers various subjects of learning, Sheer speed, while important, is not the only strength of including both computing science and electronic engineer- reconfigurable computing. Another compelling advantage is ing. Reconfigurable computing involves the use of reduced energy and power consumption. In a reconfigurable reconfigurable devices, such as field programmable gate system, the circuitry is optimised for the application, such arrays (FPGAs), for computing purposes. Reconfigurable that the power consumption will tend to be much lower than computing is also known as configurable computing or that for a general-purpose processor. A recent study [5] custom computing, since many of the design techniques can reports that moving critical software loops to reconfigurable be seen as customising a computational fabric for specific hardware results in average energy savings of 35% to 70% applications [1].
    [Show full text]
  • Hardware Platforms for Embedded Computing Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 Universität Dortmund Importance of Energy Efficiency
    Universität Dortmund Hardware Platforms for Embedded Computing Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 Universität Dortmund Importance of Energy Efficiency Efficient software design needed, otherwise, the price for software flexibility cannot be paid. © Hugo De Man (IMEC) Philips, 2007 Universität Dortmund Embedded vs. general-purpose processors • Embedded processors may be optimized for a category of applications. – Customization may be narrow or broad. • We may judge embedded processors using different metrics: – Code size. – Memory system performance. – Preditability. • Disappearing distinction: embedded processors everywhere Universität Dortmund Microcontroller Architectures Memory 0 Address Bus Program + CPU Data Bus Data Von Neumann 2n Architecture Memory 0 Address Bus Program CPU Fetch Bus Harvard Address Bus 0 Architecture Data Bus Data Universität Dortmund RISC processors • RISC generally means highly-pipelinable, one instruction per cycle. • Pipelines of embedded RISC processors have grown over time: – ARM7 has 3-stage pipeline. – ARM9 has 5-stage pipeline. – ARM11 has eight-stage pipeline. ARM11 pipeline [ARM05]. Universität Dortmund ARM Cortex Based on ARMv7 Architecture & Thumb®-2 ISA – ARM Cortex A Series - Applications CPUs focused on the execution of complex OS and user applications • First Product: Cortex-A8 • Executes ARM, Thumb-2 instructions – ARM Cortex R Series - Deeply embedded processors focused on Real-time environments • First Product: Cortex-R4(F) • Executes ARM, Thumb-2 instructions – ARM Cortex M
    [Show full text]
  • Reconfigurable Computing
    Reconfigurable Computing David Boland1, Chung-Kuan Cheng2, Andrew B. Kahng2, Philip H.W. Leong1 1School of Electrical and Information Engineering, The University of Sydney, Australia 2006 2Dept. of Computer Science and Engineering, University of California, La Jolla, California Abstract: Reconfigurable computing is the application of adaptable fabrics to solve computational problems, often taking advantage of the flexibility available to produce problem-specific architectures that achieve high performance because of customization. Reconfigurable computing has been successfully applied to fields as diverse as digital signal processing, cryptography, bioinformatics, logic emulation, CAD tool acceleration, scientific computing, and rapid prototyping. Although Estrin-first proposed the idea of a reconfigurable system in the form of a fixed plus variable structure computer in 1960 [1] it has only been in recent years that reconfigurable fabrics, in the form of field-programmable gate arrays (FPGAs), have reached sufficient density to make them a compelling implementation platform for high performance applications and embedded systems. In this article, intended for the non-specialist, we describe some of the basic concepts, tools and architectures associated with reconfigurable computing. Keywords: reconfigurable computing; adaptable fabrics; application integrated circuits; field programmable gate arrays (FPGAs); system architecture; runtime 1 Introduction Although reconfigurable fabrics can in principle be constructed from any type of technology, in practice, most contemporary designs are made using commercial field programmable gate arrays (FPGAs). An FPGA is an integrated circuit containing an array of logic gates in which the connections can be configured by downloading a bitstream to its memory. FPGAs can also be embedded in integrated circuits as intellectual property cores.
    [Show full text]
  • The Paramountcy of Reconfigurable Computing
    Energy Efficient Distributed Computing Systems, Edited by Albert Y. Zomaya, Young Choon Lee. ISBN 978-0-471--90875-4 Copyright © 2012 Wiley, Inc. Chapter 18 The Paramountcy of Reconfigurable Computing Reiner Hartenstein Abstract. Computers are very important for all of us. But brute force disruptive architectural develop- ments in industry and threatening unaffordable operation cost by excessive power consumption are a mas- sive future survival problem for our existing cyber infrastructures, which we must not surrender. The pro- gress of performance in high performance computing (HPC) has stalled because of the „programming wall“ caused by lacking scalability of parallelism. This chapter shows that Reconfigurable Computing is the sil- ver bullet to obtain massively better energy efficiency as well as much better performance, also by the up- coming methodology of HPRC (high performance reconfigurable computing). We need a massive cam- paign for migration of software over to configware. Also because of the multicore parallelism dilemma, we anyway need to redefine programmer education. The impact is a fascinating challenge to reach new hori- zons of research in computer science. We need a new generation of talented innovative scientists and engi- neers to start the beginning second history of computing. This paper introduces a new world model. 18.1 Introduction In Reconfigurable Computing, e. g. by FPGA (Table 15), practically everything can be implemented which is running on traditional computing platforms. For instance, recently the historical Cray 1 supercomputer has been reproduced cycle-accurate binary-compatible using a single Xilinx Spartan-3E 1600 development board running at 33 MHz (the original Cray ran at 80 MHz) 0.
    [Show full text]
  • A Reconfigurable Convolutional Neural Network-Accelerated
    electronics Article A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on RISC-V Instruction Set Ning Wu *, Tao Jiang, Lei Zhang, Fang Zhou and Fen Ge College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; [email protected] (T.J.); [email protected] (L.Z.); [email protected] (F.Z.); [email protected] (F.G.) * Correspondence: [email protected]; Tel.: +86-139-5189-3307 Received: 5 May 2020; Accepted: 8 June 2020; Published: 16 June 2020 Abstract: As a typical artificial intelligence algorithm, the convolutional neural network (CNN) is widely used in the Internet of Things (IoT) system. In order to improve the computing ability of an IoT CPU, this paper designs a reconfigurable CNN-accelerated coprocessor based on the RISC-V instruction set. The interconnection structure of the acceleration chain designed by the predecessors is optimized, and the accelerator is connected to the RISC-V CPU core in the form of a coprocessor. The corresponding instruction of the coprocessor is designed and the instruction compiling environment is established. Through the inline assembly in the C language, the coprocessor instructions are called, coprocessor acceleration library functions are established, and common algorithms in the IoT system are implemented on the coprocessor. Finally, resource consumption evaluation and performance analysis of the coprocessor are completed on a Xilinx FPGA. The evaluation results show that the reconfigurable CNN-accelerated coprocessor only consumes 8534 LUTS, accounting for 47.6% of the total SoC system. The number of instruction cycles required to implement functions such as convolution and pooling based on the designed coprocessor instructions is better than using the standard instruction set, and the acceleration ratio of convolution is 6.27 times that of the standard instruction set.
    [Show full text]
  • Efpgas : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed
    eFPGAs : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed To cite this version: Syed Zahid Ahmed. eFPGAs : Architectural Explorations, System Integration & a Visionary Indus- trial Survey of Programmable Technologies. Micro and nanotechnologies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2011. English. tel-00624418 HAL Id: tel-00624418 https://tel.archives-ouvertes.fr/tel-00624418 Submitted on 16 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Montpellier 2 (UM2) École Doctorale I2S LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) Domain: Microelectronics PhD thesis report for partial fulfillment of requirements of Doctorate degree of UM2 Thesis conducted in French Industrial PhD (CIFRE) framework between: Menta & LIRMM lab (Dec.2007 – Feb. 2011) in Montpellier, FRANCE “eFPGAs: Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies” eFPGAs: Explorations architecturales, integration système, et une enquête visionnaire industriel des technologies programmable by Syed Zahid AHMED Presented and defended publically on: 22 June 2011 Jury: Mr. Guy GOGNIAT Prof. at STICC/UBS (Lorient, FRANCE) President Mr. Habib MEHREZ Prof. at LIP6/UPMC (Paris, FRANCE) Reviewer Mr.
    [Show full text]
  • [email protected]
    Reiner Hartenstein, University of Kaiserslautern, Germany [email protected] http://hartenstein.de viewgraph downloading: link found in 60 Semester Informatik I http://kressarray.de Kritik an der Praktischen Informatik Xputer Lab University of Kaiserslautern (in der Lehre) Festkolloquium Universität Dortmund, 18. – 19. Juli 2002 • mißbraucht ihre Zweidrittel-Mehrheit • hält die Prägungsphase strikt „procedural-only“ • Absolventen sind daher völlig unvorbereitet für Reiner Hartenstein die nahe Zukunft Data-Stream-based Computing: Universität – Wo >90% der Anwendungen für eingebettete Kaiserslautern Antimaterie der Kern-Informatik Systeme implementiert werden – Wie für 2010 vorhergesagt • nur wenige % des Kurrikulum wären zu ändern • meine Mission: Sie hierfür zu gewinnen © 2002, [email protected] 2 http://KressArray.de Kritik an der Technischen Informatik, TI die Kern-Informatik: jung ? dynamisch ? University of Kaiserslautern (klassischer Art) University of Kaiserslautern .. ist nach >10 Technologie-Generationen ... • diese ist noch immer weit verbreitet das von Neumann Paradigma .... • keine Vorbereitung auf die heutige Arbeitswelt • 1th 4004 ... der vN Mikroprozessor • 2nd 8008 ... noch immer ist ein Methusalem ... • Indizien: Begriffe wie „Rechnerorganisation“, • 3rd 8086 die vorherrschende „Rechnerstrukturen, “„Rechnerarchitektur“ • 4th 80286 Doktrin • 5th 80386 ... die Dampfmaschine • vN-only, alles andere wird konsequent verschwiegen • 6th 80486 des Silizium-Zeitalters die Mikroelektronik • 7th P5 (Pentium) • Paradebeispiel:
    [Show full text]
  • EMBEDDED ELECTRONIC SYSTEMS DRIVEN by RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T
    UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 Francisco Fons Lluís EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE DOCTORAL THESIS Supervised by Dr. Enrique F. Cantó Navarro Departament d’Enginyeria Electrònica, Elèctrica i Automàtica Tarragona 2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA DEPARTAMENT D’ENGINYERIA ELECTRÒNICA, ELÈCTRICA I AUTOMÀTICA Avinguda dels Països Catalans, 26 Campus Sescelades 43007 Tarragona – SPAIN Tel. + 34 977 559 610 Fax + 34 977 559 605 e-mail: [email protected] http://sauron.etse.urv.es/DEEEA/ Enrique F. Cantó Navarro, professor at the Department of Electronic, Electrical and Automatic Control Engineering of the University Rovira i Virgili, STATES: That the present thesis, entitled “Embedded electronic systems driven y run-time reconfigurable hardware”, presented by Francisco Fons Lluís for the award of the degree of Doctor, has been carried out under my supervision at the Department of Electronic, Electrical and Automatic Control Engineering of the University Rovira i Virgili. Tarragona, March 2012 Doctoral Thesis Supervisor Dr. Enrique F. Cantó Navarro UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 UNIVERSITAT ROVIRA I VIRGILI EMBEDDED ELECTRONIC SYSTEMS DRIVEN BY RUN-TIME RECONFIGURABLE HARDWARE Francisco Fons Lluís DL: T. 877-2012 Abstract Runtime reconfigurable hardware technology has experienced a big progress in the last decade after both academia and industry research communities have jointly got involved in this issue, bringing the necessary talent and energy to definitively put this technology to the service of the society.
    [Show full text]