Hexafluorosilicic Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vibrationally Excited Hydrogen Halides : a Bibliography On
VI NBS SPECIAL PUBLICATION 392 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards National Bureau of Standards Bldg. Library, _ E-01 Admin. OCT 1 1981 191023 / oO Vibrationally Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) QC 100 • 1X57 no. 2te c l !14 c '- — | NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences" — Applied Radiation 2 — Quantum Electronics 1 — Electromagnetics 3 — Time 3 1 1 and Frequency — Laboratory Astrophysics — Cryogenics . -
United States Patent (10) Patent No.: US 7,190,052 B2 Lindgren (45) Date of Patent: Mar
US0071900.52B2 (12) United States Patent (10) Patent No.: US 7,190,052 B2 Lindgren (45) Date of Patent: Mar. 13, 2007 (54) SEMICONDUCTOR DEVICES WITH OXIDE 5,516,721 A 5/1996 Galli et al. COATINGS SELECTIVELY POSITONED 5,683,946 A 1 1/1997 Lu et al. OVER EXPOSED FEATURES INCLUDING 5,776,829 A 7/1998 Homma et al. SEMCONDUCTOR MATERAL 6,022,814 A 2/2000 Mikoshiba et al. 6,045,877 A 4/2000 Gleason et al. (75) Inventor: Joseph T. Lindgren, Boise, ID (US) 6,174,8246,130,116 AB1 10/20001/2001 MichaelSmith et etal. al. 6, 197,110 B1 3/2001 Lee et al. (73) Assignee: Micron Technology, Inc., Boise, ID 6,251,753 B1 6/2001 Yeh et al. (US) (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 0 days. Schreiber, S.J. et al., “Low Temperature Deposition of Microcrystal line Silicon For Thin Film Transistors,' CUED Electronic Devices (21) Appl. No.: 10/454.256 and Materials Group, http://www2.eng.cam.ac.uk/~www-edm/ (22) Filed: Jun. 3, 2003 projects/lowtempdepf1.htm, prior to Sep. 2000, 2 pages. e as (Continued) (65) Prior Publication Data Primary Examiner T. N. Quach US 2004/OO33682 A1 Feb. 19, 2004 (74) Attorney, Agent, or Firm TraskBritt Related U.S. Application Data (57) ABSTRACT (62) Division of application No. 10/218.268, filed on Aug. 13, 2002, now Pat. No. 6,593,221. A semiconductor device structure includes a passivation layer through which only non-silicon-comprising structures (51) Int. -
Hydrofluoric Acid Reduction Project – TURI Grant 2017
Hydrofluoric Acid Reduction Project – TURI Grant 2017 Sponsored by: Toxics Use Reduction Institute 126 John St Lowell, MA 01854 TURI Report 2018-001 Authors: Tyler DeFosse David Demarey Supervisor: Paul Watson Special Thanks to: Joy Onasch – Toxics Use Reduction Institute John Raschko – Massachusetts Office of Technical Assistance and Technology 1 Table of Contents 1.0 Executive Summary .......................................................................................................................... 3 2.0 Background ....................................................................................................................................... 5 2.1 Introduction ......................................................................................................................................... 5 2.2 Literature Searches .......................................................................................................................... 6 2.2.1 Diffusion Dialysis ...................................................................................................................... 6 2.2.2 Reverse Osmosis ....................................................................................................................... 7 2.2.3 Hydrofluoric Acid Wastewater Recycling Method ............................................................... 7 2.2.4 Issues Regarding the Etching of Silicon Dioxide ................................................................. 8 2.3 Alternative Strategies ..................................................................................................................... -
UNITED STATES PATENT of FICE 2,640,086 PROCESS for SEPARATING HYDROGEN FLUORIDE from CHLORODFLUORO METHANE Robert H
Patented May 26, 1953 2,640,086 UNITED STATES PATENT of FICE 2,640,086 PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM CHLORODFLUORO METHANE Robert H. Baldwin, Chadds Ford, Pa., assignor to E. H. du Pont de Nemours and Company, Wi inington, Del, a corporation of Delaware No Drawing. Application December 15, 1951, Serial No. 261,929 9 Claims. (C. 260-653) 2 This invention relates to a process for Sep These objects are accomplished essentially by arating hydrogen fluoride from monochlorodi Subjecting a mixture of hydrogen fluoride and fluoronethane, and more particularly, separat Inonochlorodifluoromethane in the liquid phase ing these components from the reaction mixture to temperatures below 0° C., preferably at about obtained in the fluorination of chloroform with -30° C. to -50° C., at either atmospheric or hydrogen fluoride, Super-atmospheric pressures, together with from In the fluorination of chloroform in the prest about 0.25 mol to about 2.5 mols of chloroform ence Of a Catalyst, a reaction mixture is pro per mol of chlorodifluoronethane contained in duced which consists essentially of HCl, HF, the mixture and separating an upper layer rich CHCIF2, CHCl2F, CHCls, and CHF3. A method O in HF from a lower organic layer. The proceSS of Separating these components is disclosed in is operative with mixtures containing up to 77% U. S. Patent No. 2,450,414 which involves sep by weight of HF. arating the components by a special fractional It has been found that chloroform is substan distillation under appropriate temperatures and tially immiscible With EIF at temperatures be pressures. -
Cylinder Valve Selection Quick Reference for Valve Abbreviations
SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female. -
Fluorosilicic Acid CAS No
Product Safety Summary Fluorosilicic Acid CAS No. 16961-83-4 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information in the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names Fluorosilicic acid (FSA) Hexafluorosilicic acid (HFA or HFS) Sand acid Silicate(2-), hexafluoro- hydrogen (1:2) Silicofluoride Fluosilicic acid Hydroflurosilicic acid Silicofluoric acid Silicon hexafluoride dihydride Silicate(2-), hexafluoro-, dihydrogen Product Overview Solvay Fluorides, LLC does not sell fluorosilicic acid solutions directly to consumers. Most fluorosilicic acid is used in industrial or municipal applications/processes. Concentrated fluorosilicic acid solution (FSA) is used for water fluoridation, as a metal surface treatment and cleaner and for pH adjustment in industrial textile processing or laundries. It can also be used in the processing of hides, for hardening masonry and ceramics and in the manufacture of other chemicals. FSA can only exist as a liquid. There is no solid form. Fluorosilicic acid solutions are corrosive and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing concentrated fluorosilicic acid solutions can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. Many of the symptoms described are due to the hydrogen fluoride present as an impurity. Page 1 of 7 Copyright 2010-2013, Solvay America, Inc. -
Ammonium Bifluoride CAS No
Product Safety Summary Ammonium Bifluoride CAS No. 1341-49-7 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names • Ammonium bifluoride (ABF) • Ammonium difluoride • Ammonium acid fluoride • Ammonium hydrogen difluoride • Ammonium fluoride compound with hydrogen fluoride (1:1) Product Overview Solvay Fluorides, LLC does not sell ammonium bifluoride directly to consumers. Ammonium bifluoride is used in industrial applications and in other processes where workplace exposures can occur. Ammonium bifluoride (ABF) is used for cleaning and etching of metals before they are further processed. It is used as an oil well acidifier and in the etching of glass or cleaning of brick and ceramics. It may also be used for pH adjustment in industrial textile processing or laundries. ABF is available as a solid or liquid solution (in water). Ammonium bifluoride is a corrosive chemical and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing ammonium bifluoride can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. On contact with water or moist skin, ABF can release hydrofluoric acid, a very dangerous acid. Inhalation or ingestion of large amounts of ammonium bifluoride can cause nausea, vomiting and loss of appetite. -
Ammonium-Persulphate.Pdf
ADVANCE An Exclusive Chemical Range CHEMICAL SALES CORPORATION CHEMICAL SUPPLIES SIMPLIFIED ABOUT US ADVANCE CHEMICAL SALES CORPORATION Advance Chemical Sales Corporation is an industrial distributor of Fine & Speciality Chemicals. It boasts of its technology-driven innovative ways in suppling products to its customers. ADVANCE CHEMICAL SALES CORPORATION (ACSC) has been a trusted supplier of chemicals since 1968. We like to work alongside customers and solve their challenges with efficiency, progressive solutions and quality products. Whether the order is for chemical commodities or speciality chemicals, no matter if the volume is large or small, we can handle it. We are committed to bring the best quality products at competitive prices from reputed manufacturers to our customers. Our goal is to make sure that our customers find their needs of chemicals in one place. We work to develop the customers' trust An Exclusive Chemical Range EXEMPLAR DELHI is in Trade and Import of ACIDS, INORGANIC CHEMICALS, METAL ORGANIC COMPOUNDS, ORGANIC CHEMICALS & SOLVENTS. EXEMPLAR NOIDA produces chemicals like ACETATES, CHELATED EDTA, CITRATES, EDTA SALTS, GLUCONATES, HEDP SALTS, OXALATES, PHOSPHATES, TARTRATES, FINE & PERFORMANCE CHEMICALS INDUSTRIES SERVED AGRO CHEMICALS DAIRY PAINTS & INKS CERAMIC & GLASS DETERGENTS PESTICIDES CHEMICAL INDUSTRIES FOOD PROCESSING PHARMACEUTICALS CONSTRUCTION LUBRICANTS POULTRY FEED COSMETICS METAL TREATMENT WATER TREATMENT CHEMICAL SUPPLIES SIMPLIFIED ACETATES AGRO CHEMICALS Ammonium acetate Amino acid (Protein hydrolysate) Calcium acetate Boron-20 Potassium acetate Disodium octaborate tetrahydrate Sodium acetate 3 hyd. Fulvic acid Sodium acetate anhy. Potassium humate Sodium diacetate Potassium humate fulvate Zinc acetate 2 hy. Seaweed extract ACIDS ALKALIES Acetic acid glacial Alumina trihydrate Adipic acid Aluminium oxide (Calcined) Ascorbic acid Ammonia solution Benzoic acid Ammonium carbonate Boric acid Calcium carbonate Citric acid mono/ anhy. -
Alphabetical Index of Substances and Articles
ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088 -
Sodium Silicofluoride MSDS
He a lt h 2 0 Fire 0 2 0 Re a c t iv it y 0 Pe rs o n a l Pro t e c t io n E Material Safety Data Sheet Sodium silicofluoride MSDS Section 1: Chemical Product and Company Identification Product Name: Sodium silicofluoride Catalog Codes: SLS4021 CAS#: 16893-85-9 RTECS: VV8410000 TSCA: TSCA 8(b) inventory: Sodium silicofluoride CI#: Not available. CHEMTREC (24HR Emergency Telephone), call: Synonym: Sodium Silicofluoride; Sodium 1-800-424-9300 hexafluorosilicate; Sodium fluosilicate; Sodium hexafluosilicate; Sodium silicon fluoride; Silicon sodium International CHEMTREC, call: 1-703-527-3887 fluoride; Disodium silicofluoride; Disodium hexafluorosilicat (2-); Disodiuim silicofluoride Chemical Name: Silicate (2-), hexafluoro-, disodium Chemical Formula: Na2SiF6 Section 2: Composition and Information on Ingredients Composition: Name CAS # % by Weight Sodium silicofluoride 16893-85-9 100 Toxicological Data on Ingredients: Sodium silicofluoride: ORAL (LD50): Acute: 125 mg/kg [Rat]. 70 mg/kg [Mouse]. Section 3: Hazards Identification Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Severe over-exposure can result in death. Potential Chronic Health Effects: CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH, 3 (Not classifiable for human.) by IARC. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. Repeated exposure to a highly toxic material may produce general deterioration of health by an accumulation in one or many human organs. Section 4: First Aid Measures p. 1 Eye Contact: Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. -
Economic Commission for Europe Inland Transport
ECONOMIC COMMISSION FOR EUROPE INLAND TRANSPORT COMMITTEE INF.6 Working Party on the Transport of Dangerous Goods Joint Meeting of the RID Safety Committee and the Working Party on the Transport of Dangerous Goods (Geneva, 1-10 September 2003) Harmonization with the UN Recommendations on the Transport of Dangerous Goods Bulk containers Transmitted by the Government of the United Kingdom 1. Introduction New provisions for bulk containers from the UN Model Regulations are being proposed for inclusion in RID/ADR based on text prepared by the UN Secretariat and as discussed at the ad hoc Working Group on the Harmonization of RID/ADR/ADN with the UN Recommendations on the Transport of Dangerous Goods that met from 26-28 May 2003. The results of the discussions on this subject are recorded in paragraphs 39 to 46 of the report of the ad hoc Working Group TRANS/WP.15/AC.1/2003/56 and the proposed text for inclusion in RID/ADR in the relevant parts of Addendum 1 to 7 of 2003/56, in particular a new chapter 6.11 and a modified chapter 7.3. 2. Proposal and Justification A new chapter 6.11, reflecting UN chapter 6.8, is contained in 2003/56 Add 6 dealing with the requirements for the design, construction, inspection and testing of bulk containers and new UN chapter 4.3 dealing with the use of bulk containers has been integrated into a modified chapter 7.3 contained in 2003/56 Add 7. Now that there are comprehensive provisions for bulk containers developed at UN level, the UK believes as reflected in paragraph 43 of 2003/56, that these should now apply to carriage in bulk in RID/ADR rather than have two separate systems based on the provisions for bulk containers in UN and the existing provisions in RID/ADR. -
Secretariat GENERAL
UNITED NATIONS ST Distr. Secretariat GENERAL ST/SG/AC.10/C.3/2002/33 12 April 2002 ORIGINAL : ENGLISH COMMITTEE OF EXPERTS ON THE TRANSPORT OF DANGEROUS GOODS AND ON THE GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS Sub-Committee of Experts on the Transport of Dangerous Goods (Twenty-first session, 1-10 July 2002 agenda item 4) TRANSPORT OF SOLID SUBSTANCES IN BULK IN CONTAINERS Transport of solids in portable tanks Transmitted by the expert from the United States of America 1. At the twentieth session of the Sub-Committee, the expert from the United States of America agreed to coordinate the development of requirements for the transport of solid dangerous goods in portable tanks and to lead a correspondence group to review proposed requirements and develop a proposal for submission to the twenty-first session. Many solids are not currently authorized for transport in portable tanks in the Model Regulations. Consignors that transport solid dangerous goods are required to acquire competent authority approvals to transport their solids in tanks which imposes unnecessary burdens and delays. Adoption of this proposal will result in the assignment of tank codes for the majority of solids dangerous goods listed in the Dangerous Goods List that are suitable and safe for transport in portable tanks. In developing the assignments, a rationalized approach was developed (see Annex 1) and other regulations that provide portable tank requirements for solids were considered (e.g. IMDG Code, ADR/RID and 49 CFR). Annex 2 of this paper provides proposed assignments that are based on the rationalized approach that is provided in Annex 1.