Hydrogen Fluoride-Catalyzed Addition of Carbon Monoxide to Propylene Under High Pressures*

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Fluoride-Catalyzed Addition of Carbon Monoxide to Propylene Under High Pressures* Hydrogen Fluoride-Catalyzed Addition of Carbon Monoxide to Propylene under High Pressures* Yoshimasa Takezaki**, Yoshio Fuchigami**, Hiroshi Teranishi**, Nobuyuki Sugita** and Kiyoshi Kudo** Summary: Isobutyric acid forming reaction of propylene with carbon monoxide has been studied in the presence of HF-H2O catalyst under high pressures. The optimum conditions for the formation of acid have been decided as follows: water content of HF catalyst, 20 wt. %; charge ratio of HF to C3H6, 15 (mole ratio);reaction temperature,94℃ or lower;and the total pressure,190kg/cm2 or higher. Reaction temperature higher than 94℃ is unfavorable because of accelerated polymerization of C3H6. Reaction mechanism of the formation of isobutyric acid has been proposed, where the rate determining step, C3H7++CO(dissolved)→C3H7CO+, being first-order with regard to each reactant. The rate expression for the yield of the acid has been derived and the apparent activation energy of the over-all reaction has been found to be 21.7kcal/mole. Introduction Since 1933 when several patents1) on the production of carboxylic acids from olefins and carbon monoxide in acidic media were In these works Koch obtained good yield published, many works have been carried (better than 90%) of acids when butene or out2)-22)on this process. On propylene as an higher olefin was used8),9), but in the case of olefin, the first systematic study was reported propylene5), detailed data on experimental by Hardy in 19362), in which the author, conditions and yields were not reported except using 87 %-phosphoric acid as the catalyst, for the formations of alcohols, esters and observed 50% yield of total acids (isobutyric carboxylic acids as the products. Such pro- acid and higher acids)at 200℃ and 200 atm ducts as alcohols and esters are elucidated of carbon monoxide pressure. After 1955, to be formed as follows15): Koch and his co-workers have shown that R++HOH⇔ROH+H+, olefins react rapidly with carbon monoxide RCO++ROH⇔RCOOR+H+. at room temperature and under moderate Recently Friedman and Cotton14)~16)con- pressures in the presence of catalysts such firmed Koch's indication that anhydrous as concentrated sulfuric acid3)~8), phosphoric hydrogen fluoride is a powerful catalyst for acid9), anhydrous hydrogen fluoride5),8), mono- olefin-carbon monoxide reactions. However hydroxyfluoboric acid and its mixtures with they found that relatively minor amounts of phosphoric or sulfuric acid10) or aqueous water in the catalyst affect the reaction and BF311),12), and Koch has suggested the fol- the nature of the products obtained, so by lowing mechanism13),23): controlling water content in the catalyst they succeeded in obtaining fairly good yields of carboxylic acids, and for propylene they re- ported about 60%yield of acid at 75~100℃ * Received November 15 and 40 atm of carbon monoxide pressure . , 1965 ** Institute for Chemical Research In the present paper we wish to report , Kyoto University, Sakyo-ku, Kyoto. on the study carried out with the purposes Volume 8-June 1966 32 Takezaki, Fuchigami, Teranishi, Sugita and Kudo: Hydrogen Fluoride- to find the optimum conditions for isobutyric determined from the weight decrease of the acid formation in the hydrogen fluoride- weighing vessel and that of the latter from catalyzed reaction of propylene and carbon the pressure decrease of the reservoir. As monoxide under high pressures and to eluci- soon as the charging of carbon monoxide was date mechanism of the reaction from kinetic finished, the stirrer was started and that viewpoint. instant was defined as the zero-time of re- action. In the case of isobaric measurement, Experimental carbon monoxide gas was supplied almost Apparatus continuously so as to keep the total pressure The experimental apparatus consisted of constant at the desired point. an autoclave, a weighing vessel for propylene, After reaction, the solution in the auto- a reservoir of carbon monoxide (500ml in clave was poured on ice-water and extracted capacity) and Bourdon-type pressure gauges with n-hexane. The organic acids contained which was previously calibrated by a dead- in the hexane and water layers were analyzed weight pressure gauge. The autoclave, made respectively ; the quantity of total organic of stainless steel (50mm in inner diameter and acids in each layer was determined by alkali 328ml in capacity), had a magnetic stirrer titration and mole ratios among acids by gas and the rotating speed of the stirrer was chromatography. In the analysis of water watched by means of a stroboscope and layer, the solution was neutralized with NaOH controlled withinア50 r. p. m. The autoclave at first, then after drying the organic salts was heated by an electric furnace and the were extracted by methanol from NaF. The temperature of the vessel was maintained at methanol solution was dried again and the each experimental temperature withinア1.0℃ sodium salts of acids were dissolved in water, measured by a chromel alumel thermocouple and, after converting to free acids by ion- inserted in the hole bored in the wall of exchange resin the trace of HF remaining vessel. in the solution was removed off as CaF2. Materials Carbon monoxide was prepared by adding Results and Discussion formic acid to hot concentrated sulfuric acid, Preliminary experiments washed with aqueous caustic soda and com- In order to identify the products and to pressed into the reservoir up to about 300 find the optimum conditions for kinetic kg/cm2. The purity of the gas used was 97% measurements of the reaction, some pre- as determined by gas chromatography and liminary runs were carried out. the greater part of the impurity was air. 1) Identification of products : The organic Propylene was prepared by dehydration of acids produced were, as would be expected isopropyl alcohol through activated alumina from the results of previous investigators, at 375~400℃, and dried with CaCl2. The monocarboxylic acids of C4 as the major part crude propylene was purified by bulb-to-bulb and those of C7 as the remainder (hereafter distillation under vacuum. The purity was designated C4-acid and C7-acid, respectively). 99.97% as determined by gas chromatography. Carboxylic acids higher than C7 were not HF gas was obtained from Daikin Kogyo detected. Although in the products of the Co. Ltd. and the purity was determined to run under more severe conditions some be 99.5% by electric conductivity measure- amounts of dark brown oily matter were ment. obtained, which resulted from polymerization Procedure of propylene and might contain some kinds The weighed amount of HF-H2O mixture of higher acids. In the usual case of present at a desired mixing ratio was sucked into experiment such coloration were scarcely the pre-evacuated autoclave. After the auto- observed. clave attained an experimental temperature, As shown in Table 1, the C4-acid and C7- propylene and carbon monoxide were charged acids were identified to be isobutyric acid and into it, and the amount of the former was α-,γ-dimethylvaleric acid respectively from Bulletin of The Japan Petroleum Institute Catalyzed Addition of Carbon Monoxide to Propylene under High Pressures 33 Table 1. Identification of acids produced their boiling points, refractive indices, ele- mental analyses, molecular weights, gas chromatographies and infrared spectra. The C7-acid could not be identified by the infrared spectrum because of the lack of data on α-, γ-dimethylvaleric acid to be compared, but the absorption peaks observed could be re- garded as characteristic ones to mono- carboxylic acids. Other isomers of C4- and Fig. 2-a Relation between water content of HF C7-acids were not detected by gas chroma- catalyst and yield of acids tography. 2) Reaction temperature: The relations between reaction temperature and the yield of total acids obtained when other conditions were fixed, are shown in Fig. 1. The curve shows the maximum yield at 94℃ and above this temperature the polymerization of pro- pylene becomes pronounced as evidenced by the dark color of product solution. Fig. 2-b Relation between water content of HF catalyst and time spent for completion of reaction The curve shows the maximum yield at about 20wt. % water, but in the region of 13~ 20%the differences among the yields are only 10~15%. On the other hand, the water content shows much more remarkable effect on the reaction speed; as shown in Fig. 2-b, Fig. 1 Relation between temperature and yield of acids as to propylene charged the time spent for completion of reaction (defined by the time until the pressure de- 3) Water content of HF catalyst: The crease stops) is much prolonged with the effect of water content of HF catalyst on increase of water content. In these runs the the yield of total acids is shown in Fig. 2-a. mole ratio, HF/C3H6, was fixed at 5.0ア0.2. Volume 8-June 1966 34 Takezaki, Fuchigami, Teranishi, Sugita and Kudo: Hydrogen Fluoride- hence the water content 15wt.% corre- yields of acids, after the same duration in sponds to H2O/C3H6=1 and this ratio becomes both cases, coincided with each other within smaller with the decrease of water content. the accuracy of analysis. In another run, From stoichiometry of the acid forming reac- the speed was changed several times during tion, the condition such that the H2O/C3H6 the reaction but no discontinuity was observed ratio is smaller than 1 is unfavorable for on the curve of CO absorption. These results our purpose and C3H6 in excess of the stoi- suggest that the diffusion process can not be chiometry may be consumed by polymerization the rate-determining step if the speed is reaction. As shown in Figs. 2-a and 2-b, more than 600 r.p.m. under the present ex- the decreasing tendency of the acids yield perimental conditions.
Recommended publications
  • Vibrationally Excited Hydrogen Halides : a Bibliography On
    VI NBS SPECIAL PUBLICATION 392 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards National Bureau of Standards Bldg. Library, _ E-01 Admin. OCT 1 1981 191023 / oO Vibrationally Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) QC 100 • 1X57 no. 2te c l !14 c '- — | NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences" — Applied Radiation 2 — Quantum Electronics 1 — Electromagnetics 3 — Time 3 1 1 and Frequency — Laboratory Astrophysics — Cryogenics .
    [Show full text]
  • UNITED STATES PATENT of FICE 2,640,086 PROCESS for SEPARATING HYDROGEN FLUORIDE from CHLORODFLUORO METHANE Robert H
    Patented May 26, 1953 2,640,086 UNITED STATES PATENT of FICE 2,640,086 PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM CHLORODFLUORO METHANE Robert H. Baldwin, Chadds Ford, Pa., assignor to E. H. du Pont de Nemours and Company, Wi inington, Del, a corporation of Delaware No Drawing. Application December 15, 1951, Serial No. 261,929 9 Claims. (C. 260-653) 2 This invention relates to a process for Sep These objects are accomplished essentially by arating hydrogen fluoride from monochlorodi Subjecting a mixture of hydrogen fluoride and fluoronethane, and more particularly, separat Inonochlorodifluoromethane in the liquid phase ing these components from the reaction mixture to temperatures below 0° C., preferably at about obtained in the fluorination of chloroform with -30° C. to -50° C., at either atmospheric or hydrogen fluoride, Super-atmospheric pressures, together with from In the fluorination of chloroform in the prest about 0.25 mol to about 2.5 mols of chloroform ence Of a Catalyst, a reaction mixture is pro per mol of chlorodifluoronethane contained in duced which consists essentially of HCl, HF, the mixture and separating an upper layer rich CHCIF2, CHCl2F, CHCls, and CHF3. A method O in HF from a lower organic layer. The proceSS of Separating these components is disclosed in is operative with mixtures containing up to 77% U. S. Patent No. 2,450,414 which involves sep by weight of HF. arating the components by a special fractional It has been found that chloroform is substan distillation under appropriate temperatures and tially immiscible With EIF at temperatures be pressures.
    [Show full text]
  • Cylinder Valve Selection Quick Reference for Valve Abbreviations
    SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female.
    [Show full text]
  • Ammonium Bifluoride CAS No
    Product Safety Summary Ammonium Bifluoride CAS No. 1341-49-7 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names • Ammonium bifluoride (ABF) • Ammonium difluoride • Ammonium acid fluoride • Ammonium hydrogen difluoride • Ammonium fluoride compound with hydrogen fluoride (1:1) Product Overview Solvay Fluorides, LLC does not sell ammonium bifluoride directly to consumers. Ammonium bifluoride is used in industrial applications and in other processes where workplace exposures can occur. Ammonium bifluoride (ABF) is used for cleaning and etching of metals before they are further processed. It is used as an oil well acidifier and in the etching of glass or cleaning of brick and ceramics. It may also be used for pH adjustment in industrial textile processing or laundries. ABF is available as a solid or liquid solution (in water). Ammonium bifluoride is a corrosive chemical and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing ammonium bifluoride can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. On contact with water or moist skin, ABF can release hydrofluoric acid, a very dangerous acid. Inhalation or ingestion of large amounts of ammonium bifluoride can cause nausea, vomiting and loss of appetite.
    [Show full text]
  • Hexafluorosilicic Acid
    Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature October 2001 Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. (Principal Investigator) Bonnie L. Carson, M.S. (Co-Principal Investigator) Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 October 2001 Toxicological Summary for Sodium Hexafluorosilicate [16893-85-9] and Fluorosilicic Acid [16961-83-4] 10/01 Executive Summary Nomination Sodium hexafluorosilicate and fluorosilicic acid were nominated for toxicological testing based on their widespread use in water fluoridation and concerns that if they are not completely dissociated to silica and fluoride in water that persons drinking fluoridated water may be exposed to compounds that have not been thoroughly tested for toxicity. Nontoxicological Data Analysis and Physical-Chemical Properties Analytical methods for sodium hexafluorosilicate include the lead chlorofluoride method (for total fluorine) and an ion-specific electrode procedure. The percentage of fluorosilicic acid content for water supply service application can be determined by the specific-gravity method and the hydrogen titration method. The American Water Works Association (AWWA) has specified that fluorosilicic acid contain 20 to 30% active ingredient, a maximum of 1% hydrofluoric acid, a maximum of 200 mg/kg heavy metals (as lead), and no amounts of soluble mineral or organic substance capable of causing health effects.
    [Show full text]
  • Occupational Exposure to Hydrogen Fluoride
    criteria for a recommended standard OCCUPATIONAL EXPOSURE TO HYDROGEN FLUORIDE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health M arch 1976 HEW Publication No. (NIOSH) 7 6 -1 4 3 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommen­ dations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epide­ miologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on hydrogen fluoride by members of my staff and the valuable constructive comments by the Review Consultants on Hydrogen Fluoride, by the ad hoc committees of the American Academy of Occupational Medicine and the Society for Occupational and Environmental Health, and by Robert B. O'Connor, M.D., NIOSH consultant in occupational medicine.
    [Show full text]
  • United States Patent Office
    Patented June 26, 195i 2558,703 UNITED STATES PATENT OFFICE PREPARATION OFPROPENE TRIFLUOROTRICHLORO Carl I. Gochenour, Niagara Falls, N. Y., assignor to Hooker Electrochemical Company, Niagara Falls, N. Y., a corporation of New York No Drawing. Application January 6, 1948, Serial No. 818 5 Claims. (CI. 260-653) 2 pene are unsatisfactory; when more than six The present invention relates to a method for moles of hydrogen fluoride to one mole of hexa the fluorination of hexachloropropene, and is chloropropene are employed, yields of trifluoro more particularly concerned with the fluorination trichloropropene are decreased by the entrain of hexachloropropene to produce high yields of ment of product in the escaping excess HF. Also, ... trifluorotrichloropropene, and especially 1,1,1-tri the use of more than 6 moles is economically fluoro-2,3,3-trichloro-2,3-propene impractical. (CF3-CCECC) 3. The presence of pentavalent antimony It has been proposed to fluorinate hexachloro halide in catalytic amounts, from about 0.2 to 2.0 propene with antimony (III) fluoride and a cata 10 per cent by weight of the hexachloropropene be lyst, and this method of fluorination, although ing preferred. Representative catalysts are anti operative, is too expensive for economic .com mony (V), chloride, antimony (V) bromide, anti mercialization. It has also been proposed previ mony (V) fluoride, and antimony (V) chlorofluo-. ously to fluorinate hexachloropropene by heating rides. The antimony (V) chloride or chloroflu it together with a fluoromethane and an alumi 5 orides are preferred. Less than about 0.2 per num halide to accomplish exchange of the flu cent of catalyst is usually not as satisfactory for orine atom or atoms in the fluoromethane and practical yields; more than about 2.0 per cent halogen atoms other than fluorine in the hexa does not appreciably increase the yield.
    [Show full text]
  • DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
    criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.
    [Show full text]
  • HYDROGEN FLUORIDE Safety Data Sheet
    Revision Date 14-May-2015 , Version 1 _________________________________________________________________________________ HYDROGEN FLUORIDE Safety Data Sheet _________________________________________________________________________________ 1. IDENTIFICATION Product identifier Product Name HYDROGEN FLUORIDE Other means of identification Safety data sheet number LIND-P070 UN/ID no. UN1052 Synonyms Hydrofluoric acid, anhydrous Recommended use of the chemical and restrictions on use Recommended Use Industrial and professional use. Uses advised against Consumer use Details of the supplier of the safety data sheet Linde Gas North America LLC - Linde Merchant Production Inc. - Linde LLC 575 Mountain Ave. Murray Hill, NJ 07974 Phone: 908-464-8100 www.lindeus.com Linde Gas Puerto Rico, Inc. Road 869, Km 1.8 Barrio Palmas, Catano, PR 00962 Phone: 787-641-7445 www.pr.lindegas.com Linde Canada Limited 5860 Chedworth Way Mississauga, Ontario L5R 0A2 Phone: 905-501-1700 www.lindecanada.com * May include subsidiaries or affiliate companies/divisions. For additional product information contact your local customer service. Emergency telephone number Company Phone Number 800-232-4726 (Linde National Operations Center, US) 905-501-0802 (Canada) CHEMTREC: 1-800-424-9300 (North America) +1-703-527-3887 (International) 2. HAZARDS IDENTIFICATION _____________________________________________________________________________________________ Page 1 / 11 LIND-P070 HYDROGEN FLUORIDE Revision Date 14-May-2015 _____________________________________________________________________________________________
    [Show full text]
  • Fluorides, Hydrogen Fluoride, and Fluorine Cas # 7681-49-4, 7664-39-3, 7782-41-4
    FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE CAS # 7681-49-4, 7664-39-3, 7782-41-4 Division of Toxicology ToxFAQsTM September 2003 This fact sheet answers the most frequently asked health questions (FAQs) about fluorides, hydrogen fluoride, and fluorine. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Fluorides are naturally occurring compounds. Low levels of fluorides can help prevent dental cavities. At high levels, fluorides can result in tooth and bone damage. Hydrogen fluoride and fluorine are naturally-occurring gases that are very irritating to the skin, eyes, and respiratory tract. These substances have been found in at least 188 of the 1,636 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are fluorides, hydrogen fluoride, and are carried by wind and rain to nearby water, soil, and food fluorine? sources. Fluorides, hydrogen fluoride, and fluorine are chemically ‘Fluorides in water and soil will form strong associations related. Fluorine is a naturally-occurring, pale yellow-green with sediment or soil particles. gas with a sharp odor. It combines with metals to make ‘Fluorides will accumulate in plants and animals. In fluorides such as sodium fluoride and calcium fluoride, both animals, the fluoride accumulates primarily in the bones or white solids.
    [Show full text]
  • Meeting Transcript: 2002-07-26 Scientific Review Panel (SRP) On
    1 SCIENTIFIC REVIEW PANEL ON TOXIC AIR CONTAMINANTS 2 AIR RESOURCES BOARD 3 STATE OF CALIFORNIA 4 5 6 PUBLIC MEETING 7 8 9 10 11 12 TRANSCRIPT OF PROCEEDINGS 13 Friday, July 26, 2002 10:15 A.M. 14 Air Resources Board 15 Annex Number 4, Auditorium 9530 Telstar Avenue 16 El Monte, California 17 18 19 20 21 22 23 24 NEALY KENDRICK, CSR NO. 11265 25 JOB NO.: 02-23739 1 1 APPEARANCES 2 SCIENTIFIC REVIEW PANEL 3 Dr. John Froines, Chairman Dr. Roger Atkinson 4 Dr. Paul D. Blanc Dr. Craig V. Byus 5 Dr. Gary D. Friedman Dr. Anthony Fucaloro 6 Dr. Stanton A. Glantz 7 Representing The California Air Resources Board: 8 Mr. Jim Behrmann, Liaison, Scientific Review Panel 9 Mr. Peter Mathews 10 Jim Aguila, Manager, Substance Evaluation Section 11 Representing The Department of Pesticide Regulation: 12 Randall Segawa, Senior Environmental Research 13 Scientist (Supervisor) 14 Representing The Office of Environmental Health 15 Hazard Assessment: 16 Dr. Robert J. Blaisdell, Chief, Exposure Modeling Unit 17 Dr. James F. Collins, Staff Toxicologist Dr. Melanie A. Marty, Supervising Toxicologist 18 Dr. David W. Rice, Staff Toxicologist Dr. Andrew G. Salmon, Chief, Air Toxicology and Risk 19 Assessment Unit 20 21 22 23 24 25 2 1 I N D E X PAGE 2 Opening remarks by Chairman Froines 4 3 Discussion of substances to be included in the Air Toxics Hot Spots Program Risk Assessment 4 Guidelines, Part III: Technical Support Document "Determination of Noncancer Chronic 5 Reference Exposure Levels." Presented by Dr. Salmon 4 6 with Dr.
    [Show full text]
  • Hydrogen Fluoride
    Right to Know Hazardous Substance Fact Sheet Common Name: HYDROGEN FLUORIDE Synonyms: Fluoric Acid; HFA CAS Number: 7664-39-3 Chemical Name: Hydrofluoric Acid RTK Substance Number: 3759 Date: April 2009 Revision: February 2017 DOT Number: UN 1052 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Hydrogen Fluoride is a colorless, fuming liquid or gas with a Hazard Summary strong, irritating odor. It is used in etching glass and in making Hazard Rating NJDHSS NFPA other chemicals, including gasoline. It is also used as a HEALTH - 4 catalyst and in fluoridating water. FLAMMABILITY - 0 REACTIVITY - 1 ODOR THRESHOLD = 0.04 ppm CORROSIVE Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe Hydrogen Fluoride is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, Hydrogen Fluoride can affect you when breathed in and may be absorbed through the skin. NIOSH, DEP, IARC, NFPA and EPA. Hydrogen Fluoride is a CORROSIVE CHEMICAL and This chemical is on the Special Health Hazard Substance contact can severely irritate and burn the skin and eyes with List. possible permanent damage. Contact can irritate the nose and throat. SEE GLOSSARY ON PAGE 5. Inhaling Hydrogen Fluoride can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs FIRST AID (pulmonary edema), a medical emergency. Eye Contact Exposure to Hydrogen Fluoride can cause headache, Immediately flush with large amounts of water for at least 30 dizziness, nausea and vomiting.
    [Show full text]