UNITED STATES PATENT OFFICE 2,542,727 ETCNG PROCESSES and SOLUTIONS Henry C

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT OFFICE 2,542,727 ETCNG PROCESSES and SOLUTIONS Henry C Patented Feb. 20, 1951 2,542,727 UNITED STATES PATENT OFFICE 2,542,727 ETCNG PROCESSES AND SOLUTIONS Henry C. Theuerer, New York, N. Y., assignor to Bell Telephone Laboratories, Incorporated, New York, N. Y., a corporation of New York No Drawing. Application December 29, 1949, Serial No. 135,817 Claims. (C. 41-42) 1. 2 This invention relates to methods of preparing of germanium of the types used in point contact the surfaces of germanium bodies for use in the rectifiers, whether n-type or p-type germanium. formation of translating devices and to etching The nature of the germanium used for forming fluids for use in these methods. rectifiers is well known in the art and forms no There has recently been developed a new type part of the presenti ion. The dependence of semiconductor triode amplifier, which has of germanium type up the presence of Small come to be known as the transistor, which is made amounts of impurities. et forth in the litera up of a body of germanium to which three Con ture, on pages 64 and 65 of "Crystal Rectifiers' nections are made, one connection making a by Torrey and Whitmer, volume 15 of Massa broad area contact with the germanium and the O chusetts Institute of Technology Radiation Lab other two connections each making point contact oratory Series (McGraw-Hill, New York, 1948). with the germanium at closely spaced points. Transistors of the type referred to above are If a signal current is passed in one direction most conveniently formed from germanium hav across the germanium body through one of the ing the shape of a disc or wafer. The wafer may point contacts and the broad area contact and a be cut from an ingot of n-type or p-type ger potential is applied in the opposite direction manium. N-type germanium, ordinarily con across the broad area contact and the other point taining an excess of donor atoms of the Order contact, the signal is amplified through the latter of several parts in 10,000,000, has been found path. In such a device, the most desirable am particularly suitable. It is convenient to mount plification characteristics are obtained only if 2) the germanium wafer on a stud, as of brass, by the germanium surface is given a Suitable pre a Suitable means, as by soldering one face of the paratory treatment, wafer to a face of the stud, so as to provide the This treatment involves cutting a body, as for broad area contact referred to above. instance a wafer, from an ingot of germanium, The exposed face of the germanium wafer is grinding the surface to a dull gray finish with a then ground. The grinding is most suitably car suitable wet abrasive powder, washing and dry ried out by grinding the germanium surface ing the surface, and then etching the Surface in against a smooth hard surface, as of glass, a suitable etchant solution until the dull, lustre charged with a slurry of water and an abrasive, less gray appearance has been replaced by a Sur Such as alundum, which is a pure crystalline face having a sharply delineated grain structure 30 aluminum oxide, having a fine particle size of and a metallic lustre on the grain Surfaces. The the Order of 600 mesh (passing a screen of 600 two point contact wires are then applied to the mesh per inch). Obviously, a coarser or finer treated surface, the broad area base contact hav abrasive may be used, for instance with a particle ing been applied to the germanium body at any size of 200 mesh, or larger, to 900 mesh or finer. time after it was cut from the ingot. The de 35 The germanium surface is then washed with vice is then subjected to an electrical "forming' water and dried, after which it has a dull, gray, operation to develop the desired characteristics. lustreless appearance. This preliminary treatment is more particularly The germanium surface is then etched in the described and claimed in the application of W. G. aqueous solution of hydrofluoric acid and hydro Pfann, Serial No. 67,797, filed December 29, 1948. 40 gen peroxide referred to above. If the ger The nature of the etchant Solution used in this manium wafer is mounted on a brass stud, no treatment has a considerable effect upon the precautions are necessary to protect the stud characteristics of the finished device. Prior to during the etching operation since this etchant the present invention, an etchant which gave has only a mild action on the metal of the stud. satisfactory results was an aqueous solution of 45 The germanium wafer can therefore be etched nitric acid, hydrofluoric acid and copper nitrate. by direct immersion, together with the stud, in The present invention is based upon the dis the etching solution. With etchants previously covery that Superior transistor characteristics, as used, it was necessary to protect the mounting well as increased ease of manufacture, are pro stud during the etching, which was a costly and duced if the etching operation referred to above 50 time consuming Operation. is Carried out using an etchant which is an aque The solution of hydrofluoric acid and hydro ous Solution of hydrofluoric acid and hydrogen gen peroxide can be used effectively for etching peroxide. germanium in a considerable range of propor The etching process of the present invention tions and dilutions. Convenient commercial is effective when applied to surfaces of all bodies Sources of the ingredients of the etching solu 2,542,727 3 4. tion are an aqueous hydrofluoric acid Solution tions having at least this concentration. Prefer containing 48 per cent by weight of hydrogen ably concentrations of at least 35 grams of hy fiuoride and an aqueous solution of hydrogen per drogen fluoride per liter of solution are used in oxide containing 30 per cent by weight of hy order to gain the advantages of more rapid etch drogen peroxide. ing. A very satisfactory etching solution for the pur Concentrations of hydrogen fluoride in excess pose of the present invention is made up of 1 of 300 grams per liter of solution are undesirable part by volume of such a hydrofluoric acid solu because of the uncontrollably rapid etching rate. tion, 1 part by volume of such a hydrogen per Preferably the concentration is maintained at oxide solution and 4 additional parts by volume of O not more than 150 grams, or more preferably water. The hydrogen fiuoride concentration in 100 grams, per liter of solution. such a solution is about 95 grams per liter. With Immediately after removal from the etching such an etching solution, the desired transistor Solution, the etched body is thoroughly Washed properties can be obtained by etching the ger and dred, as by Washing it in a running stream manium surface for one minute. The resulting 5 of cold water and drying it in an air blast. germanium surface has a sharply delineated grain This treatment results in a germanium body structure and a metallic lustre within the grain which can be assembled into a transistor of supe boundaries. Etching for a longer period of time rior amplifying properties. Such a transistor results in continuous dissolution of germanium may be formed by applying two separate point from the surface but has no substantial effect 20 contact electrodes to the prepared germanium on the transistor properties. Therefore, etching surface. These electrodes may be of copper or may be continued for as long as desired, short of phosphor bronze, although electrodes of silver, actual mechanical damage to the germanium tungSten, noybdenum, aluminum, platinum and wafer, but in commercial practice it is desirable, other materials have been used. The points of for economic reasons, that the etching period be 25 contact between the tWO electrodes and the ger as short as possible. manium Surface are spaced closely togetner, In the etching solution referred to above, equal ordinarily at a distance of 0.001 inch to 0.006 volumes of a 48 per cent hydrofluoric acid Solu inch Iron one another, although in some cases tion and a 30 per cent hydrogen peroxide Solu the distance may be less than U.U0l inch and as tion were used (a ratio of i. 7 parts by weight of 30 large as 0.020 inch or more. The diameters of hydrofluoric acid to 1 part of hydrogen perox the junctions between the point contact elec ide), and the mixture was diluted with water. trodes and the germanium Surface may be of the A similar mixture, undiluted with additional wa Order of 0.001 inch Or leSS. ter, can also be used satisfactorily. The etching One of these point contact electrodes, referred action of the undiluted mixture is So great that 35 to as the emitter, and tile Oroad area, base con the resulting germanium surface is pitted but nection constitute the two input connections of this has no detrimenal effect on the transistor the transistor. The other point contact elec properties. It is, however, ordinarily more desir trode, referred to as the Collector, and the broad able to use a more dilute solution which offers area base connection constitute the two output greater control over the etching rate. 40 connections of the transistor. As the solution is made more dilute, the rate Prior to use, the transistor is subjected to an of etching decreases so that a longer immersion electrical forming operation. This forming is time is necessary to produce the characteristic carried out by electrically connecting the emitter etched surface appearance and the desired tran to the base, preferably with a positive bias, with sistor characteristics.
Recommended publications
  • Vibrationally Excited Hydrogen Halides : a Bibliography On
    VI NBS SPECIAL PUBLICATION 392 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards National Bureau of Standards Bldg. Library, _ E-01 Admin. OCT 1 1981 191023 / oO Vibrationally Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) QC 100 • 1X57 no. 2te c l !14 c '- — | NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences" — Applied Radiation 2 — Quantum Electronics 1 — Electromagnetics 3 — Time 3 1 1 and Frequency — Laboratory Astrophysics — Cryogenics .
    [Show full text]
  • UNITED STATES PATENT of FICE 2,640,086 PROCESS for SEPARATING HYDROGEN FLUORIDE from CHLORODFLUORO METHANE Robert H
    Patented May 26, 1953 2,640,086 UNITED STATES PATENT of FICE 2,640,086 PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM CHLORODFLUORO METHANE Robert H. Baldwin, Chadds Ford, Pa., assignor to E. H. du Pont de Nemours and Company, Wi inington, Del, a corporation of Delaware No Drawing. Application December 15, 1951, Serial No. 261,929 9 Claims. (C. 260-653) 2 This invention relates to a process for Sep These objects are accomplished essentially by arating hydrogen fluoride from monochlorodi Subjecting a mixture of hydrogen fluoride and fluoronethane, and more particularly, separat Inonochlorodifluoromethane in the liquid phase ing these components from the reaction mixture to temperatures below 0° C., preferably at about obtained in the fluorination of chloroform with -30° C. to -50° C., at either atmospheric or hydrogen fluoride, Super-atmospheric pressures, together with from In the fluorination of chloroform in the prest about 0.25 mol to about 2.5 mols of chloroform ence Of a Catalyst, a reaction mixture is pro per mol of chlorodifluoronethane contained in duced which consists essentially of HCl, HF, the mixture and separating an upper layer rich CHCIF2, CHCl2F, CHCls, and CHF3. A method O in HF from a lower organic layer. The proceSS of Separating these components is disclosed in is operative with mixtures containing up to 77% U. S. Patent No. 2,450,414 which involves sep by weight of HF. arating the components by a special fractional It has been found that chloroform is substan distillation under appropriate temperatures and tially immiscible With EIF at temperatures be pressures.
    [Show full text]
  • Cylinder Valve Selection Quick Reference for Valve Abbreviations
    SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female.
    [Show full text]
  • Ammonium Bifluoride CAS No
    Product Safety Summary Ammonium Bifluoride CAS No. 1341-49-7 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names • Ammonium bifluoride (ABF) • Ammonium difluoride • Ammonium acid fluoride • Ammonium hydrogen difluoride • Ammonium fluoride compound with hydrogen fluoride (1:1) Product Overview Solvay Fluorides, LLC does not sell ammonium bifluoride directly to consumers. Ammonium bifluoride is used in industrial applications and in other processes where workplace exposures can occur. Ammonium bifluoride (ABF) is used for cleaning and etching of metals before they are further processed. It is used as an oil well acidifier and in the etching of glass or cleaning of brick and ceramics. It may also be used for pH adjustment in industrial textile processing or laundries. ABF is available as a solid or liquid solution (in water). Ammonium bifluoride is a corrosive chemical and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing ammonium bifluoride can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. On contact with water or moist skin, ABF can release hydrofluoric acid, a very dangerous acid. Inhalation or ingestion of large amounts of ammonium bifluoride can cause nausea, vomiting and loss of appetite.
    [Show full text]
  • Hexafluorosilicic Acid
    Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature October 2001 Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. (Principal Investigator) Bonnie L. Carson, M.S. (Co-Principal Investigator) Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 October 2001 Toxicological Summary for Sodium Hexafluorosilicate [16893-85-9] and Fluorosilicic Acid [16961-83-4] 10/01 Executive Summary Nomination Sodium hexafluorosilicate and fluorosilicic acid were nominated for toxicological testing based on their widespread use in water fluoridation and concerns that if they are not completely dissociated to silica and fluoride in water that persons drinking fluoridated water may be exposed to compounds that have not been thoroughly tested for toxicity. Nontoxicological Data Analysis and Physical-Chemical Properties Analytical methods for sodium hexafluorosilicate include the lead chlorofluoride method (for total fluorine) and an ion-specific electrode procedure. The percentage of fluorosilicic acid content for water supply service application can be determined by the specific-gravity method and the hydrogen titration method. The American Water Works Association (AWWA) has specified that fluorosilicic acid contain 20 to 30% active ingredient, a maximum of 1% hydrofluoric acid, a maximum of 200 mg/kg heavy metals (as lead), and no amounts of soluble mineral or organic substance capable of causing health effects.
    [Show full text]
  • Occupational Exposure to Hydrogen Fluoride
    criteria for a recommended standard OCCUPATIONAL EXPOSURE TO HYDROGEN FLUORIDE U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health M arch 1976 HEW Publication No. (NIOSH) 7 6 -1 4 3 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommen­ dations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epide­ miologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on hydrogen fluoride by members of my staff and the valuable constructive comments by the Review Consultants on Hydrogen Fluoride, by the ad hoc committees of the American Academy of Occupational Medicine and the Society for Occupational and Environmental Health, and by Robert B. O'Connor, M.D., NIOSH consultant in occupational medicine.
    [Show full text]
  • Hydrogen Fluoride-Catalyzed Addition of Carbon Monoxide to Propylene Under High Pressures*
    Hydrogen Fluoride-Catalyzed Addition of Carbon Monoxide to Propylene under High Pressures* Yoshimasa Takezaki**, Yoshio Fuchigami**, Hiroshi Teranishi**, Nobuyuki Sugita** and Kiyoshi Kudo** Summary: Isobutyric acid forming reaction of propylene with carbon monoxide has been studied in the presence of HF-H2O catalyst under high pressures. The optimum conditions for the formation of acid have been decided as follows: water content of HF catalyst, 20 wt. %; charge ratio of HF to C3H6, 15 (mole ratio);reaction temperature,94℃ or lower;and the total pressure,190kg/cm2 or higher. Reaction temperature higher than 94℃ is unfavorable because of accelerated polymerization of C3H6. Reaction mechanism of the formation of isobutyric acid has been proposed, where the rate determining step, C3H7++CO(dissolved)→C3H7CO+, being first-order with regard to each reactant. The rate expression for the yield of the acid has been derived and the apparent activation energy of the over-all reaction has been found to be 21.7kcal/mole. Introduction Since 1933 when several patents1) on the production of carboxylic acids from olefins and carbon monoxide in acidic media were In these works Koch obtained good yield published, many works have been carried (better than 90%) of acids when butene or out2)-22)on this process. On propylene as an higher olefin was used8),9), but in the case of olefin, the first systematic study was reported propylene5), detailed data on experimental by Hardy in 19362), in which the author, conditions and yields were not reported except using 87 %-phosphoric acid as the catalyst, for the formations of alcohols, esters and observed 50% yield of total acids (isobutyric carboxylic acids as the products.
    [Show full text]
  • United States Patent Office
    Patented June 26, 195i 2558,703 UNITED STATES PATENT OFFICE PREPARATION OFPROPENE TRIFLUOROTRICHLORO Carl I. Gochenour, Niagara Falls, N. Y., assignor to Hooker Electrochemical Company, Niagara Falls, N. Y., a corporation of New York No Drawing. Application January 6, 1948, Serial No. 818 5 Claims. (CI. 260-653) 2 pene are unsatisfactory; when more than six The present invention relates to a method for moles of hydrogen fluoride to one mole of hexa the fluorination of hexachloropropene, and is chloropropene are employed, yields of trifluoro more particularly concerned with the fluorination trichloropropene are decreased by the entrain of hexachloropropene to produce high yields of ment of product in the escaping excess HF. Also, ... trifluorotrichloropropene, and especially 1,1,1-tri the use of more than 6 moles is economically fluoro-2,3,3-trichloro-2,3-propene impractical. (CF3-CCECC) 3. The presence of pentavalent antimony It has been proposed to fluorinate hexachloro halide in catalytic amounts, from about 0.2 to 2.0 propene with antimony (III) fluoride and a cata 10 per cent by weight of the hexachloropropene be lyst, and this method of fluorination, although ing preferred. Representative catalysts are anti operative, is too expensive for economic .com mony (V), chloride, antimony (V) bromide, anti mercialization. It has also been proposed previ mony (V) fluoride, and antimony (V) chlorofluo-. ously to fluorinate hexachloropropene by heating rides. The antimony (V) chloride or chloroflu it together with a fluoromethane and an alumi 5 orides are preferred. Less than about 0.2 per num halide to accomplish exchange of the flu cent of catalyst is usually not as satisfactory for orine atom or atoms in the fluoromethane and practical yields; more than about 2.0 per cent halogen atoms other than fluorine in the hexa does not appreciably increase the yield.
    [Show full text]
  • DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS
    criteria for a recommended standard . occupational exposure to DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE criteria for a recommended standard... OCCUPATIONAL EXPOSURE TO DECOMPOSITION PRODUCTS of FLUOROCARBON POLYMERS U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health September 1977 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 DHEW (NIOSH) Publication No. 77-193 PREFACE The Occupational Safety and Health Act of 1970 emphasizes the need for standards to protect the health and safety of workers exposed to an ever-increasing number of potential hazards at their workplace. The National Institute for Occupational Safety and Health has projected a formal system of research, with priorities determined on the basis of specified indices, to provide relevant data from which valid criteria for effective standards can be derived. Recommended standards for occupational exposure, which are the result of this work, are based on the health effects of exposure. The Secretary of Labor will weigh these recommendations along with other considerations such as feasibility and means of implementation in developing regulatory standards. It is intended to present successive reports as research and epidemiologic studies are completed and as sampling and analytical methods are developed. Criteria and standards will be reviewed periodically to ensure continuing protection of the worker. I am pleased to acknowledge the contributions to this report on the decomposition products of fluorocarbon polymers by members of the NIOSH staff and the valuable constructive comments by the Review Consultants on the Decomposition Products of Fluorocarbon Polymers and by Robert B.
    [Show full text]
  • HYDROGEN FLUORIDE Safety Data Sheet
    Revision Date 14-May-2015 , Version 1 _________________________________________________________________________________ HYDROGEN FLUORIDE Safety Data Sheet _________________________________________________________________________________ 1. IDENTIFICATION Product identifier Product Name HYDROGEN FLUORIDE Other means of identification Safety data sheet number LIND-P070 UN/ID no. UN1052 Synonyms Hydrofluoric acid, anhydrous Recommended use of the chemical and restrictions on use Recommended Use Industrial and professional use. Uses advised against Consumer use Details of the supplier of the safety data sheet Linde Gas North America LLC - Linde Merchant Production Inc. - Linde LLC 575 Mountain Ave. Murray Hill, NJ 07974 Phone: 908-464-8100 www.lindeus.com Linde Gas Puerto Rico, Inc. Road 869, Km 1.8 Barrio Palmas, Catano, PR 00962 Phone: 787-641-7445 www.pr.lindegas.com Linde Canada Limited 5860 Chedworth Way Mississauga, Ontario L5R 0A2 Phone: 905-501-1700 www.lindecanada.com * May include subsidiaries or affiliate companies/divisions. For additional product information contact your local customer service. Emergency telephone number Company Phone Number 800-232-4726 (Linde National Operations Center, US) 905-501-0802 (Canada) CHEMTREC: 1-800-424-9300 (North America) +1-703-527-3887 (International) 2. HAZARDS IDENTIFICATION _____________________________________________________________________________________________ Page 1 / 11 LIND-P070 HYDROGEN FLUORIDE Revision Date 14-May-2015 _____________________________________________________________________________________________
    [Show full text]
  • Fluorides, Hydrogen Fluoride, and Fluorine Cas # 7681-49-4, 7664-39-3, 7782-41-4
    FLUORIDES, HYDROGEN FLUORIDE, AND FLUORINE CAS # 7681-49-4, 7664-39-3, 7782-41-4 Division of Toxicology ToxFAQsTM September 2003 This fact sheet answers the most frequently asked health questions (FAQs) about fluorides, hydrogen fluoride, and fluorine. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Fluorides are naturally occurring compounds. Low levels of fluorides can help prevent dental cavities. At high levels, fluorides can result in tooth and bone damage. Hydrogen fluoride and fluorine are naturally-occurring gases that are very irritating to the skin, eyes, and respiratory tract. These substances have been found in at least 188 of the 1,636 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are fluorides, hydrogen fluoride, and are carried by wind and rain to nearby water, soil, and food fluorine? sources. Fluorides, hydrogen fluoride, and fluorine are chemically ‘Fluorides in water and soil will form strong associations related. Fluorine is a naturally-occurring, pale yellow-green with sediment or soil particles. gas with a sharp odor. It combines with metals to make ‘Fluorides will accumulate in plants and animals. In fluorides such as sodium fluoride and calcium fluoride, both animals, the fluoride accumulates primarily in the bones or white solids.
    [Show full text]
  • Meeting Transcript: 2002-07-26 Scientific Review Panel (SRP) On
    1 SCIENTIFIC REVIEW PANEL ON TOXIC AIR CONTAMINANTS 2 AIR RESOURCES BOARD 3 STATE OF CALIFORNIA 4 5 6 PUBLIC MEETING 7 8 9 10 11 12 TRANSCRIPT OF PROCEEDINGS 13 Friday, July 26, 2002 10:15 A.M. 14 Air Resources Board 15 Annex Number 4, Auditorium 9530 Telstar Avenue 16 El Monte, California 17 18 19 20 21 22 23 24 NEALY KENDRICK, CSR NO. 11265 25 JOB NO.: 02-23739 1 1 APPEARANCES 2 SCIENTIFIC REVIEW PANEL 3 Dr. John Froines, Chairman Dr. Roger Atkinson 4 Dr. Paul D. Blanc Dr. Craig V. Byus 5 Dr. Gary D. Friedman Dr. Anthony Fucaloro 6 Dr. Stanton A. Glantz 7 Representing The California Air Resources Board: 8 Mr. Jim Behrmann, Liaison, Scientific Review Panel 9 Mr. Peter Mathews 10 Jim Aguila, Manager, Substance Evaluation Section 11 Representing The Department of Pesticide Regulation: 12 Randall Segawa, Senior Environmental Research 13 Scientist (Supervisor) 14 Representing The Office of Environmental Health 15 Hazard Assessment: 16 Dr. Robert J. Blaisdell, Chief, Exposure Modeling Unit 17 Dr. James F. Collins, Staff Toxicologist Dr. Melanie A. Marty, Supervising Toxicologist 18 Dr. David W. Rice, Staff Toxicologist Dr. Andrew G. Salmon, Chief, Air Toxicology and Risk 19 Assessment Unit 20 21 22 23 24 25 2 1 I N D E X PAGE 2 Opening remarks by Chairman Froines 4 3 Discussion of substances to be included in the Air Toxics Hot Spots Program Risk Assessment 4 Guidelines, Part III: Technical Support Document "Determination of Noncancer Chronic 5 Reference Exposure Levels." Presented by Dr. Salmon 4 6 with Dr.
    [Show full text]