Vibrationally Excited Hydrogen Halides : a Bibliography On

Total Page:16

File Type:pdf, Size:1020Kb

Vibrationally Excited Hydrogen Halides : a Bibliography On VI NBS SPECIAL PUBLICATION 392 J U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards National Bureau of Standards Bldg. Library, _ E-01 Admin. OCT 1 1981 191023 / oO Vibrationally Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) QC 100 • 1X57 no. 2te c l !14 c '- — | NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences" — Applied Radiation 2 — Quantum Electronics 1 — Electromagnetics 3 — Time 3 1 1 and Frequency — Laboratory Astrophysics — Cryogenics . THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices: Engineering and Product Standards — Weights and Measures — Invention and Innova- tion — Product Evaluation Technology — Electronic Technology — Technical Analysis — Measurement Engineering — Structures, Materials, and Life Safety 4 — Building Environment * — Technical Evaluation and Application * — Fire Technology. THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effec- tiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions: Computer Services — Systems and Software — Computer Systems Engineering — Informa- tion Technology. THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units: Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Relations. 'Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. 3 Part of the Center for Radiation Research. 3 Located at Boulder, Colorado 80302. « Part of the Center for Building Technology. Vibrational^ Excited Hydrogen Halides: A Bibliography on Chemical Kinetics of Chemiexcitation and Energy Transfer Processes (1958 through 1973) Natlprial Bureau of Standards MAY 6 1974 Francis Westley Chemical Kinetics Information Center Institute for Materials Research National Bureau of Standards Washington, D.C. 20234 This work was supported by the NBS Office of Standard Reference Data and the Air Force Office of Scientific Research 1400 Wilson Blvd., Arlington, Va. 22209 U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director Issued April 1974 Supt. of Docs. No. C13.10:392 1. Chemical reaction, Kate of— Bibliography. 2. Hydrogen halides— Bibliography. 3. Energy transfer— Bibliography. I. United States. National Bureau of Standards. Institute for Materials Research. Chemical Kinetics Information Center. II. Title. III. Series: United States. National Bureau of Standards. Special Publication 392. QC100.U57 No. 392 [Z5524.R5] 389\08s 74-5358 [016.54U39] National Bureau of Standards Special Publication 392 Nat. Bur. Stand. (U.S.), Spec. Publ. 392, 81 pages (Apr. 1974) CODEN: XNBSAV U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1974 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13.10:392). Price $1.30 Foreword The National Standard Reference Data System was established in 1963 for the purpose of pro- moting the critical evaluation and dissemination of numerical data of the physical sciences. The pro- gram is coordinated by the Office of Standard Reference Data of the National Bureau of Standards but involves the efforts of many groups in universities, government laboratories, and private indus- try. The primary aim of the program is to provide compilations of critically evaluated physical and chemical property data. These tables are published in the Journal of Physical and Chemical Ref- erence Data, in the NSRDS-NBS series of the National Bureau of Standards, and through other appropriate channels. The task of critical evaluation is carried out in various data centers, each with a well-defined technical scope. A necessary preliminary step to the critical evaluation process is the retrieval from the world scientific literature of all papers falling within the scope of the center. Each center, therefore, builds up a comprehensive well-indexed bibliographical file which forms the base for the evaluation task. Bibliographies derived from these files are published when they appear to be of value to research workers and others interested in the particular technical area. Further information on NSRDS and the publications which form the primary output of the program may be obtained by writing to the Office of Standard Reference Data, National Bureau of Standards, Washington, DC 20234. David R. Lide, Jr., Chief Office of Standard Reference Data TABLE OP CONTENTS Introduction 1 Guidelines for the user 7 Journal and report codes 11 Part I. Hydrogen fluoride (HP, DF ) 15 A. Formation of HF* (DF*) 15 1. Bimolecular reactions (Abstraction lasers) 15 a. Abstraction of H (D) atom by F atom 15 i. F + H + HF + H 2 15 > ii. F + HX HF* + X . 16 iii. F + RH * HF* + R . 17 b. Abstraction of F atom by H (D) atom 17 i. H + Fp HF* + F 17 ii. H + FX > HF* + X . 18 iii. H + RF -> HF* + R 18 2. Unimolecular reactions (Elimination lasers) 18 a. R- + R * Cr R ] ^ HF + M (Chemical activation ) .18 2 i 2 -» b. M., + hv HF + M 9 (Photochemical elimination) . .19 B. HF (DF ) Energy transfer and quenching 19 1. HF (DF ) Energy transfer 19 a. HF(v. = 0) + M* -* HF*(v. > 0) + M (M ^ HF) (Energy transferred to HF from M ) 19 b. HF*(v. = m) + M -» HF^(v. < m) + M* (v > 0) 1 J J. J (Energy transferred from HF to M) 19 -* c . HF(v. ) + HF(v . ) HF(v, ) + HF(v. ) = (i + j k + I ) (HF - HF Energy transfer) ... ^0 2. HF* (DF*) Quenching .21 + r ±\ -> a. HF (v. = m ) + M HF ( v . < m ) + M (v. > 0) (Collisional quenching) .21 b. HF*(v. = m) + HF -> HF^^v. < m) + HF (v. & 0) (HF - HF self-quenching) .22 £ c. HF (v = m) + M -> prod. quenching .22 1 (Dissociative ) i. HF*(v = m) + M HF(v^ = 0) + M + M. 22 1 2 ii. HF*(v = m) + M > H + F + M 23 1 C. HF* (DF*) Theoretical papers 23 v Part II. Hydrogen chloride (HC1, DC1) 24 A. Formation of hCl* (DCl*) 24 1. Bimolecular reactions (Abstraction lasers) 24 a. Abstraction of H (D) atom by CI atom 24 i. CI + H * HC1* + H . 24 2 -> 24 ii. CI +• HX HC1* + X . iii. CI + RH -> FC1* + R 25 b. Abstraction of CI atom by H (D) atom 25 i. H + Cl -> HCl* + CI 25 2 ii. H + C1X * HCl* + X 26 iii. H + RC1 HCl* + R 26 iv. H + HC1 -> HCl* + H 27 2. Unimolecular reactions (Elimination lasers) 27 a. R + R -* [R^Rp] * HC1* + M(Chemical activation) . 27 1 2 b. + hv -* HC1 + (Photochemical elimination). .27 ± i B. HC1 (DC1 ) Energy transfer and quenching 27 1. HCl* (DCl*) Energy transfer 27 a. HC1 (v. = 0) + M* -> HCl^v. > 0) + M (M ? HC1) (Energy transferred to HC1 from M ) 27 b. HCl*(v. = m) + M -> HCl^(v. < m) + M* (v. > 0) (Energy transferred from HC1 to M) 27 c. HCl(v.) + hCl(v.) > HCl(v, ) + HCl(v ) 1 J K I 28 (i + j = k + i ) (HC1 - HC1 Energy transfer) . + 28 2. HCl* (DC1 ) Quenching a. HCl*(v. = m) + M -> HC1- (v. <m)+M (v. > 0) i J J (Collisional quenching) 28 (4:) b. HCl^Cv. = m) + HC1 + HCl (v. < m) + HC1 i i (v. a 0) (HC1 - HC1 self-quenching) 29 c.
Recommended publications
  • MDA Scientific SPM
    MDA Scientific SPM Fast response monitor for the detection of a target gas SPM Advantages • Fast response monitor specific to target gas only • Gas sensitivity to ppb levels with physical evidence • Minimum maintenance and no dynamic calibration • Customized for harsh industrial environments • More than 50 gas calibrations available Applications • Outdoor locations • Corrosive areas • Remote sampling areas • Gas storage areas • Survey work • Perimeter/fencelines • Ventilation and exhaust systems Options • Z-purge system • Duty cycle • ChemKey™ • RS422 • Remote reset • Portable • Extended sample • Heater option (operate from -20°C to ±40°C) Technical Specification Specifications Detection Technique Chemcassette® Detection System Alarm Point Dual level alarms typically set at 1/2 TLV and TLV Response Time As fast as 10 seconds Alarm Indication Local audio/visual alarms; remote capability optional Signal Outputs SPDT concentration alarm relays; SPDT fault relay; 4-20 mA; digital display Relay Rating 120VAC@10amps; 240VAC@5amps; 48VDC@5amps Operating Temperature Range 32° to 104°F; 0° to 40°C (basic unit); heating/cooling optional Power Requirements 115/230 VAC 50/60 Hz, battery operation optional Enclosure NEMA 4X fiberglass (basic unit) Dimensions 12"(H) x 12"(W) x 7”(D) (30.5 x 30.5 x 17.8 cm) (basic unit) Weight Up to 25 pounds, depending on option installed Note: options may vary the specifications Detectable Gases Range Amines Ammonia (NH3) 2.6-75.0 ppm Ammonia (NH3)-II 2.6-75.0 ppm Dimethylamine (DMA) 0.1-6 ppm n-Butylamine (n-BA) 0.4-12
    [Show full text]
  • 1-Bromopropane
    Right to Know Hazardous Substance Fact Sheet Common Name: 1-BROMOPROPANE Synonyms: Propyl Bromide CAS Number: 106-94-5 Chemical Name: Propane, 1-Bromo- RTK Substance Number: 4198 Date: October 2009 Revision: March 2016 DOT Number: UN 2344 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE 1-Bromopropane is a clear, colorless liquid with a sweet odor. Hazard Summary It is used in dry cleaning, and as a solvent, adhesive, and an Hazard Rating NJDHSS NFPA aerosol propellant. HEALTH 2 - FLAMMABILITY 3 - REACTIVITY 1 - Reasons for Citation 1-Bromopropane is on the Right to Know Hazardous FLAMMABLE Substance List because it is cited by the EPA, NTP, ACGIH POISONOUS GASES ARE PRODUCED IN FIRE and DOT. CONTAINERS MAY EXPLODE IN FIRE This chemical is on the Special Health Hazard Substance Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; List. 4=severe 1-Bromopropane can affect you when inhaled and may be absorbed through the skin. 1-Bromopropane should be handled as a CARCINOGEN-- WITH EXTREME CAUTION. 1-Bromopropane may cause reproductive damage. SEE GLOSSARY ON PAGE 5. HANDLE WITH EXTREME CAUTION. Contact can irritate the skin and eyes. FIRST AID Inhaling 1-Bromopropane can irritate the nose, throat and lungs. Eye Contact Exposure can cause headache, dizziness, lightheadedness, Immediately flush with large amounts of water for at least 15 trouble concentrating, and weakness. minutes, lifting upper and lower lids. Remove contact 1-Bromopropane may damage the nervous system causing lenses, if worn, while rinsing. numbness, “pins and needles,” and/or weakness in the hands and feet. Skin Contact 1-Bromopropane may affect the liver.
    [Show full text]
  • Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2013 12:00 AM Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling) Rana Sabouni The University of Western Ontario Supervisor Prof. Sohrab Rohani The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rana Sabouni 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Chemical Engineering Commons Recommended Citation Sabouni, Rana, "Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)" (2013). Electronic Thesis and Dissertation Repository. 1472. https://ir.lib.uwo.ca/etd/1472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i CARBON DIOXIDE ADSORPTION BY METAL ORGANIC FRAMEWORKS (SYNTHESIS, TESTING AND MODELING) (Thesis format: Integrated Article) by Rana Sabouni Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada Rana Sabouni 2013 ABSTRACT It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and various methods have been reported for the CO2 capturing including adsorption onto zeolites, porous membranes, and absorption in amine solutions.
    [Show full text]
  • Questions ALKENES: REACTIONS with HYDROGEN HALIDES
    Chemguide – questions ALKENES: REACTIONS WITH HYDROGEN HALIDES 1. State Markovnikov's Rule. 2. Show the structural formulae for the main product of each of the following addition reactions between various alkenes and a hydrogen halide. (This question is also testing your ability to write the structures for alkenes given their names. If you can't do that, get it sorted out before you continue!) a) ethene and hydrogen bromide b) but-2-ene and hydrogen chloride c) but-1-ene and hydrogen chloride d) propene and hydrogen iodide e) 2-methylbut-2-ene and hydrogen iodide f) but-1-ene and hydrogen bromide where everything is pure g) but-1-ene and hydrogen bromide in the presence of oxygen or organic peroxides 3. a) How does the rate of the reaction change as you go along the series HF – HCl – HBr – HI? b) Briefly explain the trend you have given in part (a). c) How does the rate of reaction change as you go from ethene to propene to 2-methylbut-2-ene? d) Alkyl groups (like methyl and ethyl groups) have a tendency to “push” electrons away from themselves towards the double bond. (i) How does this help to explain the way the attractiveness of the double bond varies from ethene to propene to 2-methylbut-2-ene? (ii) The mechanism for the reactions involves the formation of intermediate ions with the positive charge on a carbon atom (carbocations). The intermediate carbocations in these cases would be + + + CH CH CH CHCH CH CCH CH 3 2 3 3 3 2 3 CH3 Why does this help to explain the variation in reactivity that you should have given in part (c)? www.chemguide.co.uk.
    [Show full text]
  • UNITED STATES PATENT of FICE 2,640,086 PROCESS for SEPARATING HYDROGEN FLUORIDE from CHLORODFLUORO METHANE Robert H
    Patented May 26, 1953 2,640,086 UNITED STATES PATENT of FICE 2,640,086 PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM CHLORODFLUORO METHANE Robert H. Baldwin, Chadds Ford, Pa., assignor to E. H. du Pont de Nemours and Company, Wi inington, Del, a corporation of Delaware No Drawing. Application December 15, 1951, Serial No. 261,929 9 Claims. (C. 260-653) 2 This invention relates to a process for Sep These objects are accomplished essentially by arating hydrogen fluoride from monochlorodi Subjecting a mixture of hydrogen fluoride and fluoronethane, and more particularly, separat Inonochlorodifluoromethane in the liquid phase ing these components from the reaction mixture to temperatures below 0° C., preferably at about obtained in the fluorination of chloroform with -30° C. to -50° C., at either atmospheric or hydrogen fluoride, Super-atmospheric pressures, together with from In the fluorination of chloroform in the prest about 0.25 mol to about 2.5 mols of chloroform ence Of a Catalyst, a reaction mixture is pro per mol of chlorodifluoronethane contained in duced which consists essentially of HCl, HF, the mixture and separating an upper layer rich CHCIF2, CHCl2F, CHCls, and CHF3. A method O in HF from a lower organic layer. The proceSS of Separating these components is disclosed in is operative with mixtures containing up to 77% U. S. Patent No. 2,450,414 which involves sep by weight of HF. arating the components by a special fractional It has been found that chloroform is substan distillation under appropriate temperatures and tially immiscible With EIF at temperatures be pressures.
    [Show full text]
  • Cylinder Valve Selection Quick Reference for Valve Abbreviations
    SHERWOOD VALVE COMPRESSED GAS PRODUCTS Appendix Cylinder Valve Selection Quick Reference for Valve Abbreviations Use the Sherwood Cylinder Valve Series Abbreviation Chart on this page with the Sherwood Cylinder Valve Selection Charts found on pages 73–80. The Sherwood Cylinder Valve Selection Chart are for reference only and list: • The most commonly used gases • The Compressed Gas Association primary outlet to be used with each gas • The Sherwood valves designated for use with this gas • The Pressure Relief Device styles that are authorized by the DOT for use with these gases PLEASE NOTE: The Sherwood Cylinder Valve Selection Charts are partial lists extracted from the CGA V-1 and S-1.1 pamphlets. They can change without notice as the CGA V-1 and S-1.1 pamphlets are amended. Sherwood will issue periodic changes to the catalog. If there is any discrepancy or question between these lists and the CGA V-1 and S-1.1 pamphlets, the CGA V-1 and S-1.1 pamphlets take precedence. Sherwood Cylinder Valve Series Abbreviation Chart Abbreviation Sherwood Valve Series AVB Small Cylinder Acetylene Wrench-Operated Valves AVBHW Small Cylinder Acetylene Handwheel-Operated Valves AVMC Small Cylinder Acetylene Wrench-Operated Valves AVMCHW Small Cylinder Acetylene Handwheel-Operated Valves AVWB Small Cylinder Acetylene Wrench-Operated Valves — WB Style BV Hi/Lo Valves with Built-in Regulator DF* Alternative Energy Valves GRPV Residual Pressure Valves GV Large Cylinder Acetylene Valves GVT** Vertical Outlet Acetylene Valves KVAB Post Medical Valves KVMB Post Medical Valves NGV Industrial and Chrome-Plated Valves YVB† Vertical Outlet Oxygen Valves 1 * DF Valves can be used with all gases; however, the outlet will always be ⁄4"–18 NPT female.
    [Show full text]
  • Financial Statements and Trustees' Report 2017
    Royal Society of Chemistry Financial Statements and Trustees’ Report 2017 About us Contents We are the professional body for chemists in the Welcome from our president 1 UK with a global community of more than 50,000 Our strategy: shaping the future of the chemical sciences 2 members in 125 countries, and an internationally Chemistry changes the world 2 renowned publisher of high quality chemical Chemistry is changing 2 science knowledge. We can enable that change 3 As a not-for-profit organisation, we invest our We have a plan to enable that change 3 surplus income to achieve our charitable objectives Champion the chemistry profession 3 in support of the chemical science community Disseminate chemical knowledge 3 and advancing chemistry. We are the largest non- Use our voice for chemistry 3 governmental investor in chemistry education in We will change how we work 3 the UK. Delivering our core roles: successes in 2017 4 We connect our community by holding scientific Champion for the chemistry profession 4 conferences, symposia, workshops and webinars. Set and maintain professional standards 5 We partner globally for the benefit of the chemical Support and bring together practising chemists 6 sciences. We support people teaching and practising Improve and enrich the teaching and learning of chemistry 6 chemistry in schools, colleges, universities and industry. And we are an influential voice for the Provider of high quality chemical science knowledge 8 chemical sciences. Maintain high publishing standards 8 Promote and enable the exchange of ideas 9 Our global community spans hundreds of thousands Facilitate collaboration across disciplines, sectors and borders 9 of scientists, librarians, teachers, students, pupils and Influential voice for the chemical sciences 10 people who love chemistry.
    [Show full text]
  • Former Fellows Biographical Index Part
    Former Fellows of The Royal Society of Edinburgh 1783 – 2002 Biographical Index Part Two ISBN 0 902198 84 X Published July 2006 © The Royal Society of Edinburgh 22-26 George Street, Edinburgh, EH2 2PQ BIOGRAPHICAL INDEX OF FORMER FELLOWS OF THE ROYAL SOCIETY OF EDINBURGH 1783 – 2002 PART II K-Z C D Waterston and A Macmillan Shearer This is a print-out of the biographical index of over 4000 former Fellows of the Royal Society of Edinburgh as held on the Society’s computer system in October 2005. It lists former Fellows from the foundation of the Society in 1783 to October 2002. Most are deceased Fellows up to and including the list given in the RSE Directory 2003 (Session 2002-3) but some former Fellows who left the Society by resignation or were removed from the roll are still living. HISTORY OF THE PROJECT Information on the Fellowship has been kept by the Society in many ways – unpublished sources include Council and Committee Minutes, Card Indices, and correspondence; published sources such as Transactions, Proceedings, Year Books, Billets, Candidates Lists, etc. All have been examined by the compilers, who have found the Minutes, particularly Committee Minutes, to be of variable quality, and it is to be regretted that the Society’s holdings of published billets and candidates lists are incomplete. The late Professor Neil Campbell prepared from these sources a loose-leaf list of some 1500 Ordinary Fellows elected during the Society’s first hundred years. He listed name and forenames, title where applicable and national honours, profession or discipline, position held, some information on membership of the other societies, dates of birth, election to the Society and death or resignation from the Society and reference to a printed biography.
    [Show full text]
  • Thursday 10 January 2019
    Please check the examination details below before entering your candidate information Candidate surname Other names Pearson Edexcel Centre Number Candidate Number International Advanced Level Thursday 10 January 2019 Afternoon (Time: 1 hour 40 minutes) Paper Reference WCH04/01 Chemistry Advanced Unit 4: General Principles of Chemistry I – Rates, Equilibria and Further Organic Chemistry (including synoptic assessment) Candidates must have: Scientific calculator Total Marks Data Booklet Instructions • Use black ink or black ball-point pen. • Fill in the boxes at the top of this page with your name, centre number and candidate number. • Answer all questions. • Answer the questions in the spaces provided – there may be more space than you need. Information • The total mark for this paper is 90. • The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question. • Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. • A Periodic Table is printed on the back cover of this paper. Advice • Read each question carefully before you start to answer it. • Show all your working in calculations and include units where appropriate. • Check your answers if you have time at the end. Turn over P54560A ©2019 Pearson Education Ltd. *P54560A0128* 2/1/1/1/1/1/ SECTION A Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on THIS AREA WRITE IN DO NOT this section.
    [Show full text]
  • The Summer Assignment Will Receive a GRADE on the First Day of Class – August 9
    Bishop Moore AP Chemistry Summer Assignment June 2017 Future AP Chemistry Student, Welcome to AP Chemistry. In order to ensure the best start for everyone next fall, I have prepared a summer assignment that reviews basic chemistry concepts some of which you may have forgotten you learned. For those topics you need help with there are a multitude of tremendous chemistry resources available on the Internet. With access to hundreds of websites either in your home or at the local library, I am confident that you will have sufficient resources to prepare adequately for the fall semester. The reference text book as part of AP course is “Chemistry: The Central Science” by Brown LeMay 14th Edition for AP. Much of the material in this summer packet will be familiar to you. It will be important for everyone to come to class the first day prepared. While I review throughout the course, extensive remediation is not an option as we work towards our goal of being 100% prepared for the AP Exam in early May. There will be a test covering the basic concepts included in the summer packet during the first or second week of school. You may contact me by email: ([email protected]) this summer. I will do my best to answer your questions ASAP. I hope you are looking forward to an exciting year of chemistry. You are all certainly excellent students, and with plenty of motivation and hard work you should find AP Chemistry a successful and rewarding experience. Finally, I recommend that you spread out the summer assignment.
    [Show full text]
  • Ammonium Bifluoride CAS No
    Product Safety Summary Ammonium Bifluoride CAS No. 1341-49-7 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found in the Safety Data Sheet (SDS) for the chemical substance. Names • Ammonium bifluoride (ABF) • Ammonium difluoride • Ammonium acid fluoride • Ammonium hydrogen difluoride • Ammonium fluoride compound with hydrogen fluoride (1:1) Product Overview Solvay Fluorides, LLC does not sell ammonium bifluoride directly to consumers. Ammonium bifluoride is used in industrial applications and in other processes where workplace exposures can occur. Ammonium bifluoride (ABF) is used for cleaning and etching of metals before they are further processed. It is used as an oil well acidifier and in the etching of glass or cleaning of brick and ceramics. It may also be used for pH adjustment in industrial textile processing or laundries. ABF is available as a solid or liquid solution (in water). Ammonium bifluoride is a corrosive chemical and contact can severely irritate and burn the skin and eyes causing possible permanent eye damage. Breathing ammonium bifluoride can severely irritate and burn the nose, throat, and lungs, causing nosebleeds, cough, wheezing and shortness of breath. On contact with water or moist skin, ABF can release hydrofluoric acid, a very dangerous acid. Inhalation or ingestion of large amounts of ammonium bifluoride can cause nausea, vomiting and loss of appetite.
    [Show full text]
  • Anhydrous Hydrogen Bromide
    Product Safety Assessment Anhydrous Hydrogen Bromide Anhydrous hydrogen bromide is primarily used in two types of applications: 1) To etch poly-silicon wafers for the manufacture of computer chips that are part of electronic devices 2) As a “building block” chemical, meaning it is often reacted with other chemicals in highly-controlled industrial settings to make other chemicals. Anhydrous hydrogen bromide is made using bromine (for more information see the Product Safety Assessment for bromine). Hydrogen bromide is a colorless gas that can be compressed to liquid form when pressurized. It fumes strongly in moist air, forming hydrobromic acid, which is corrosive to common metals. Anhydrous hydrogen bromide is toxic, irritating to the respiratory system when inhaled, and corrosive to the eyes, skin, and mucous membranes. Anhydrous hydrogen bromide is transported in sturdy cylinders to industrial customers or laboratories. Identification Anhydrous hydrogen bromide is identified by several names, all of them referring to the same chemical product. These names include: • H-Br • CAS Number [10035-10-6] • Anhydrous hydrogen bromide • Anhydrous HBr • Hydrogen bromide (HBr) • Hydrogen dibromide (H2Br2) • Hydrogen monobromide • Hydrobromic acid (in aqueous solutions) Last Revised: March 2017 Page 1 of 6 Product Safety Assessment: Anhydrous Hydrogen Bromide Description Production: Anhydrous hydrogen bromide is made in dedicated manufacturing units. During production, hydrogen and bromine are combined and burned in specially designed furnaces. The anhydrous hydrogen gas generated is purified and packaged for shipment. Uses: Hydrogen bromide is commonly used in combination with other chemicals by the semi-conductor industry for plasma etching of polysilicon computer chips used in electronic devices.
    [Show full text]