Cellulose Structure Modification and Hydrolysis

Total Page:16

File Type:pdf, Size:1020Kb

Cellulose Structure Modification and Hydrolysis Cellulose Structure Modification And Hydrolysis Cloak-and-dagger and toe Padraig always resettle inquisitorially and transmit his chairlifts. Roomiest and overloaded Travers misinterpret her urns staircase defusing and pamphleteer vocally. Traditionalism Barnett overused, his cystolith gemmating skedaddles confusingly. GPa, whereupon a transition to an unknown polymorphous modification occurred. English, science, history, and more. We wanted to show pattern variations in volume when the cellulose chains and water molecules react with each other. Discover how to keep your adventure going with Aquaseal. Slowly stir in a specific amount of polyvinyl alcohol powder into a known volume of cold water. In the energy tab of the amorphous cell calculation dialog, we change the force field to COMPASS. This is possibly due to the interactions which occur between xanthan gum and wheat proteins, as well as between xanthan gum with the amylose of the starch molecule. Lymphedema: A therapeutic approach in the treatment and rehabilitation of cancer patients. For fabrics the best cotton has long fibers, and short fibers or cotton dust are removed. Cellulose is used in diverse forms as insulation in transformers, cables, and other electrical equipment. PLOS Biology provides an Open Access platform to showcase your best research and commentary across all areas of biological science. The hydrolysis of cellulose is a sequential breakdown of the linear glucose chains, whereas hemicellulases must be capable of hydrolysing branched chains containing different sugars and functional. See full list on azom. Pectin, a related compound, occurs to a small degree in the middle lamella, especially in the pith and young tissue, and consists of polygalacturonic acid. Quizlet is another water causes glycogen are different organisms, the kuraray product concentration of the activity studies given above research and structure and alkali treated with matrix surrounding the. Xanthan gum is a substance used in making some foods and medications. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. RF over Fiber Converters. Thus Ruff degradation of the pentose arabinose gives the tetrose erythrose. Repeat this process to complete the first row. Purification and characterization of oligosaccharide elicitors of phytoalexin accumulation. Enzymes can bind prosthetic groups that participate in enzyme reactions. XRD patterns of control and poplar wood after different treatments. What is an emulsifier? Decorative skin and hair cosmetics containing microcrystalline cellulose as enhancing agent. As an elastomer with the ability to replicate features down to the nanoscale, PDMS can be used to fabricate a myriad of structures through soft lithography. As more heat is added, the vaporization process continues with a corresponding increase in the volume. Journal of Food Science and Technology. Start studying Biological Polymers. This request a new state of molecular structure and reduce facial swelling during saccharification rate of the use the structure and cellulose modification of a small. The goal is to be able to predict properties of molecules, both in isolation and in the condensed phase, with accuracy comparable to an experiment. Typically polyester, glass, carbon, or ceramic fiber. There is no consensus in literature about which analgesics to use, for how long, and what is the best dosage with the least adverse effects. Postoperative orthognathic surgery edema assessment with and without manual lymphatic drainage. This right here this is a bowl of mashed potatoes, which is mostly starch. In addition, application in an area using more than one point promotes better results than the concentrated application in a single point. Furthermore, further analysis was performed that combined both the height change and surface roughness change along with time. Choose a language for shopping. The patented Thermablok material overcomes this by using a unique fiber to suspend a proprietary formula of aerogel so that it can be bent or compressed while still retaining its amazing insulation properties. This time, we took a chain cellulosic that contains five repeating units of cellobiose. It can be concluded that a lower enzyme loading can be used for both materials. Ouch You have clicked a page that seems to be very popular. The age at which the patient is operated has been pointed out as one of the predictive factors for the development of bigger or smaller edema. These were diluted as necessary to provide equal CMCase activities. Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. In the global volume, there is much change. Issue is now open for submissions. Second, a pentamethyl ether derivative of the pyranose structure converts the hemiacetal function to an acetal. Each image indicates that caused by acid and dennis on this extraction, as expected that mechanical process was you sure your gesso ends and cellulose structure and pharmaceutical group. What is PVA glue made from? Synergism between enzymes involved in the solubilization of native cellulose. The semiconductor materials thus produced were of high quality, with basic parameters corresponding to those for the single crystals. As with the furanose ring, the anomeric carbon is placed on the right with the ring oxygen to the back of the edgewise view. Simple carbohydrates are modifications of short hydrocarbon chains. Find all the books, read about the author and more. Permanganometri dapat digunakan untuk penentuan kadar besi, hydrolysis and cellulose structure accounts for. Since it is indigestible by humans, it has no caloric value and is thus used in excessive amounts in diet foods to create a sensation of fullness both physical and physiology without having consumed too many calories. Do you think there is an emerging area of research that really needs to be highlighted? This review provides critical information to aid in promoting research on the development of efficient and industrially feasible synergistic proteins. In cosmetics, PVA is used as a binder or film former and to increase the thickness of the oil or lipid portion of the cosmetic. Edema assessment and measurement is still performed subjectively in the clinical routine. Papermaking Science and Technology. The most important compounds in this class, cellulose, starch and glycogen are all polymers of glucose. Insights into plant cell wall structure, architecture and integrity using glycol profiling of native and AFEX pretreated biomass. Various pretreatment methods have been applied for enhancing energy conversion of poplar wood, such as acid and alkali, which have been widely applied individually. Blue arrows represent possible nicking points created by the LPMO on the cellulose. This image gallery is a special feature of the genomicscience. Another reason is that the delignified material has a lower lignin content, which is known to be detrimental to enzymatic hydrolysis. Due to its unique features of high cohesiveness, membrane tenacity, smoothness, solvent resistance, gas inhibitor, wear resistance, protective colloid, and waterproof after specially treated, polyvinyl alcohol is widely applied in textile, building, papermaking. Biological macromolecules play a critical role in cell structure and function. We recommend moving this block and the preceding CSS link to the HEAD of your HTML file. Transcribed Image Text from this Question. LPMOs can be viewed as promising biocatalysts for enzymatic modification or degradation of cellulose fibers. The nanocellulose aerogels were prepared by freeze drying the cellulose solutions. Selecting this option will search the current publication in context. Polymers in biological systems. In the case of LPMO, although the polydispersity increased, the formation of very low molar mass fractions was not noticeable in agreement with the analysis of the soluble fraction using HPAEC. Vous avez réussi le test! Hydrogenated Castor Oil, Lactic Acid, Benzyl Alcohol. International Journal of Oral Surgery. In stock and ready to ship. In order to expand the ways in which cellulose can be put to practical use, chemists have devised techniques for preparing solutions of cellulose derivatives that can be spun into fibers, spread into a film or cast in various solid forms. Total hydrolysis of cellulose is shown to be impeded at high consistency Kristensen et al. Aerogels, among the lightest of solid materials, are being revolutionized by NASA. Both mechanisms lead to structures with higher porosity than the starting fibers. Hence, the structural properties of polyvinyl alcohol polymers depend on the extent of polymerization and hydrolysis. Interesting results have been reported by Boerstoel et al. The sodium atom has been oxidized. Unlike shorter chains, carbohydrate polymers are frequently composed of a single type of monosaccharide unit. Pilot takes out power line and crash lands plane. The selected file can not be uploaded because you do not have permission to upload files of that type. The molecules and ions present in water are constantly buffeting one another. The gut of termites also can be utilized for this purpose. Isogai A, Atalla RH. It is prepared by reaction of cellulose with acetic anhydride and an acid catalyst. Aerogel Composites To improve the properties of aerogels composite materials are developed. So this right over here, this is maltose right over here. Slime: There are many recipes around for ways of making
Recommended publications
  • Ii- Carbohydrates of Biological Importance
    Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons.
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • Extending Enzyme Molecular Recognition with an Expanded Amino Acid Alphabet
    Extending enzyme molecular recognition with an expanded amino acid alphabet Claire L. Windlea,b, Katie J. Simmonsa,c, James R. Aulta,b, Chi H. Trinha,b, Adam Nelsona,c,1, Arwen R. Pearsona,2,3, and Alan Berrya,b,1 aAstbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; bSchool of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and cSchool of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom Edited by Perry Allen Frey, University of Wisconsin–Madison, Madison, WI, and approved January 20, 2017 (received for review October 26, 2016) Natural enzymes are constructed from the 20 proteogenic amino for catalysis and arise through posttranslational modifications of acids, which may then require posttranslational modification or the the polypeptide chain (21, 22), allowing access to chemistries not recruitment of coenzymes or metal ions to achieve catalytic function. otherwise provided by the 20 proteogenic amino acids. Here, we demonstrate that expansion of the alphabet of amino acids Technologies for the protein engineer to incorporate Ncas into can also enable the properties of enzymes to be extended. A proteins at specifically chosen sites, either by genetic means (23–25) chemical mutagenesis strategy allowed a wide range of noncanon- or by chemical modification (26, 27), have recently been developed. ical amino acids to be systematically incorporated throughout an These approaches are powerful because, unlike traditional protein active site to alter enzymic substrate specificity. Specifically, 13 engineering with the 20 canonical amino acids, protein engineering different noncanonical side chains were incorporated at 12 different with Ncas has almost unlimited novel side-chain structures and positions within the active site of N-acetylneuraminic acid lyase chemistries from which to choose.
    [Show full text]
  • Reaction of Glucose Catalyzed by Framework and Extraframework Tin Sites in Zeolite Beta
    Reaction of Glucose Catalyzed by Framework and Extraframework Tin Sites in Zeolite Beta Thesis by Ricardo Bermejo-Deval In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2014 (Defended 12 May 2014) ii 2014 Ricardo Bermejo-Deval All Rights Reserved iii ACKNOWLEDGEMENTS The past years at Caltech have been one of the most challenging periods of my life, learning to be a better person and being part of the world of science. I feel privileged to have interacted with such talented and inspiring colleagues and scientists, as well as those I have disagreed with. The variety of people I have encountered and the experiences I have gathered have helped me to gain scholarship, wisdom, confidence and critical thinking, as much as to become an open-minded person to any opinion or people. First and foremost, I am very grateful to my advisor and mentor, Professor Mark E. Davis, for his financial, scientific and personal support. I appreciate his patience, flexibility, advice and scientific discussions, helping me to grow and mature scientifically. I would like to thank the thesis committee Professors Richard Flagan, Jay Labinger and Theodor Agapie, for their discussions and kindness. I appreciate everyone in the Davis group for helping me in the lab throughout these years. Special thanks to Yasho for helping me get started in the lab, to Bingjun and Raj for scientific advice, and to Marat for helpful talks. I am also very thankful to Sonjong Hwang for SS NMR, David Vandervelde for NMR and Mona Shahgholi for mass spectrometry.
    [Show full text]
  • Conformational Study of the Open-Chain and Furanose Structures of D-Erythrose and D-Threose ⇑ Luis Miguel Azofra A, Ibon Alkorta A, , José Elguero A, Paul L
    Carbohydrate Research 358 (2012) 96–105 Contents lists available at SciVerse ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres Conformational study of the open-chain and furanose structures of D-erythrose and D-threose ⇑ Luis Miguel Azofra a, Ibon Alkorta a, , José Elguero a, Paul L. A. Popelier b,c a Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006 Madrid, Spain b Manchester Interdisciplinary Biocentre (MIB), 131 Princess Street, Manchester M1 7DN, United Kingdom c School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom article info abstract Article history: The potential energy surfaces for the different configurations of the D-erythrose and D-threose (open- Received 3 May 2012 chain, a- and b-furanoses) have been studied in order to find the most stable structures in the gas phase. Received in revised form 18 June 2012 For that purpose, a large number of initial structures were explored at B3LYP/6-31G(d) level. All the min- Accepted 19 June 2012 ima obtained at this level were compared and duplicates removed. A further reoptimization of the Available online 27 June 2012 remaining structures was carried out at B3LYP/6-311++G(d,p) level. We characterized 174 and 170 min- ima for the open-chain structures of D-erythrose and D-threose, respectively, with relative energies that Keywords: range over an interval of just over 50 kJ/mol. In the case of the furanose configurations, the number of D-Erythrose minima is smaller by approximately one to two dozen. G3B3 calculations on the most stable minima indi- D-Threose DFT cate that the a-furanose configuration is the most stable for both D-erythrose and D-threose.
    [Show full text]
  • Trehalose and Carbon Partitioning in Sugarcane
    TREHALOSE AND CARBON PARTITIONING IN SUGARCANE Susan Bosch Dissertation presented for the Degree of Doctor of Philosophy (Plant Biotechnology) at the University of Stellenbosch Promoter: Prof. F.C. Botha Institute for Plant Biotechnology and South African Sugar Research Institute Co-Promoter: Prof. J.M. Rohwer Department of Biochemistry December 2005 i Declaration I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ……………………….. Date: ……………………….. ii ABSTRACT The current understanding of the regulation of sucrose accumulation is still incomplete even though many scientists have investigated this subject. Components of trehalose metabolism have been implicated in the regulation of carbon flux in bacteria, yeast and more recently in plants. With a view to placing trehalose metabolism in the context of cytosolic sugarcane sucrose metabolism and carbon partitioning we have investigated the metabolites, transcripts and enzymes involved in this branch of carbohydrate metabolism in sugarcane internodal tissues. Sugarcane internodal trehalose levels varied between 0.31 ± 0.09 and 3.91 ± 0.99 nmol.g-1 fresh weight (FW). From statistical analysis of the metabolite profile it would appear that trehalose does not directly affect sucrose accumulation, although this does not preclude involvement of trehalose- 6-phosphate in the regulation of carbon partitioning. The metabolite data generated in this study demanded further investigation into the enzymes (and their transcripts) responsible for trehalose metabolism. Trehalose is synthesised in a two step process by the enzymes trehalose-6-phosphate synthase (EC 2.4.1.15, TPS) and trehalose-6-phosphate phosphatase (EC 3.1.3.12, TPP), and degraded by trehalase (EC 3.2.1.28).
    [Show full text]
  • Deoxyribose-5-Phosphate Aldolase As a Synthetic Catalyst'
    J. Am. Chem. SOC.1990, 112, 2013-2014 2013 chemical shift for the iminosilaacyl carbon at 6 299.07.3a3b Ad- Deoxyribose-5-phosphateAldolase as a Synthetic dition of 1 equiv of CN(XyI) to a benzene solution of 4, or reaction Catalyst' of 1 with 2 equiv of CN(Xyl), results in formation of a blue complex 5. The combustion analysis of isolated 5 is consistent Carlos F. Barbas, 111, Yi-Fong Wang, and Chi-Huey Wong* with a 1:2 adduct of 1 with isocyanide, Cp,Sc(CN(Xyl)),Si- (SiMe3)3. However, 'H NMR data for 5 indicate a complex Department of Chemistry structure and the presence of three inequivalent SiMe3 groups in The Research Institute of Scripps Clinic a 1 :1: 1 ratioss Formation of X-ray-quality, blue crystals from La Jolla, California 92037 diethvl ether allowed comdete characterization of this comwund. Received November 29, 1989 Tie crystal structure7'(Figure 1) shows that 5 is the pioduct of an isocyanide-coupling reaction that results in further rear- Enzyme-catalyzed stereocontrolled aldol condensations are rangements. The structure drawn in Scheme I reflects the ob- valuable in organic synthesis, particularly in the synthesis of served structural parameters. The chelate ring of 5 is derived from carbohydrates and related s~bstances?~~We report here an initial the two isoc anide groups and contains a Sc( 1)-N( 1) single bond study on the synthetic utility of a bacterial 2-deoxyribose-5- (2.133 (7) i),a longer (dative) Sc(l)-N(2) bond (2.324 (8) A), phosphate aldolase (DERA, EC 4.1.2.4) overexpressed in Es- and a C=C double bond (C(l)-C(2) = 1.375 (12) A).
    [Show full text]
  • Carbohydrate) (Lecture-Part 5)
    Course Code: CHEM3014 Course Name: Organic Chemistry V Unit: 4 (Carbohydrate) (Lecture-Part 5) For B.Sc. (Honours) Semester: VI By Dr. Abhijeet Kumar Department of Chemistry Mahatma Gandhi Central University Reactions of Monosaccharides Osazone Formation: The reaction between three moles of phenylhydrazine and one mole of aldose produces a crystalline product known as phenylosazone (Scheme 1). Phenylosazones crystallize readily (unlike sugars) and are useful derivatives for identifying sugars. Scheme 1: Phenyl osazone formation from aldose Osazone formation results in a loss of the chirality center at C2 but does not affect other chirality centers. Mechanism of Osazone Formation The reaction begins with the formation of phenyl hydrazone with one equivalent of phenylhydrazine . Upon treating the phenylhydrazones with two additional equivalents of phenylhydrazine, osazone formation occurs. one of the equivalents of phenylhydrazine is converted into aniline (PhNH2) and ammonia (NH3) (Scheme 2). Scheme 2: Proposed Mechanism for Phenyl osazone formation from aldose Although the mechanism of the phenylhydrazone formation in the first step is clear. But the next steps towards the formation of the osazone has been explained by various other mechanisms. Please refer to the study material provided below. BARRY, V., MITCHELL, P. Mechanism of Osazone Formation. Nature 175, 220 (1955). https://doi.org/10.1038/175220a0 Example of Osazone Formation Under mild conditions both D-glucose, D-mannose and D-Fructose form same osazone (Scheme 3). Scheme 3: Osazone formation from different aldoses Formation of identical osazone in case of both D-glucose and D-mannose indicates that both have the same configurations about C3, C4, and C5.
    [Show full text]
  • Appendix 1: Nonhazardous Chemicals
    Environmental Health & Safety Appendix 1: Nonhazardous Chemicals This list is not all-inclusive. Discharges with a pH between 5.5 and 9.5 Does not contain As, Ba, Cd, Cr, Pb, Hg, Se, Ag, Mn, Ni, Cu, or Zn A-B, C-F, G-L, M-P, R-X A-B Actin A-Adenosine, free base Adenosine 2' & 3'-monophosphate, disodium salt Adenosine 2' & 3'-monophosphate, free acid Adenosine 2',3'-cyclic monophosphate, sodium salt Adenosine 3',5'-cyclic monophosphate, sodium salt Adenosine 3'-monophosphate, sodium salt Adenosine 5'-diphosphate, sodium salt Adenosine 5'-monophosphate Adenosine 5'-monophosphate, disodium salt Adenosine 5'-monophosphate, sodium salt Adonitol; Ribitol Agar; Bacto agar Agarose Alginic acid, sodium salt; Sodium alginate ß-Alanine DL-Alanine L-Alanine Albumin, bovine Albumin, bovine, methylated Albumin, human Alcohol dehydrogenase Aldolase, type X DL-Aminobutyric acid; GABA 4-Amino-2-methyl-1-naphthol; Vitamin K5 Amylase alpha-Amylase, type II-A alpha-Amylase, type VI-B ß-Amylase, sweet potato Amyloglucosidase Amylose Apyrase, grade VI D-Arabinose L(+) Arabinose D-Arabitol Arginase Arginine L-(+)-Arginine D-Asparagine, monohydrate DL-Asparagine L-Asparagine Aspartamene; Asp-phe methyl ester; L-Aspartyl-L-phenylalanine methyl ester D-Aspartic acid DL-Aspartic acid L-Aspartic acid L-Aspartic acid, monosodium salt Autex developer and replenisher Baclofen Bacto peptone; Peptone Base waste (aqueous), neutralized to a pH between 5 and 11.5 (does not contain As, Ba, Cd, Cr, Pb, Hg, Se, Ag, Mn, Ni, Cu, or Zn) Bayberry wax Bentonite ß-Glucuronidase,
    [Show full text]
  • Carbohydrates Hydrates of Carbon: General Formula Cn(H2O)N Plants
    Chapter 25: Carbohydrates hydrates of carbon: general formula Cn(H2O)n Plants: photosynthesis hν 6 CO2 + H2O C6H12O6 + 6 O2 Polymers: large molecules made up of repeating smaller units (monomer) Biopolymers: Monomer units: carbohydrates (chapter 25) monosaccharides peptides and proteins (chapter 26) amino acids nucleic acids (chapter 28) nucleotides 315 25.1 Classification of Carbohydrates: I. Number of carbohydrate units monosaccharides: one carbohydrate unit (simple carbohydrates) disaccharides: two carbohydrate units (complex carbohydrates) trisaccharides: three carbohydrate units polysaccharides: many carbohydrate units CHO H OH HO HO HO H HO HO O HO O glucose H OH HO HO OH HO H OH OH CH2OH HO HO HO O HO O HO HO O HO HO O HO HO HO O O O O O HO HO O HO HO HO O O HO HO HO galactose OH + glucose O glucose = lactose polymer = amylose or cellulose 316 160 II. Position of carbonyl group at C1, carbonyl is an aldehyde: aldose at any other carbon, carbonyl is a ketone: ketose III. Number of carbons three carbons: triose six carbons: hexose four carbons: tetrose seven carbons: heptose five carbons: pentose etc. IV. Cyclic form (chapter 25.5) CHO CHO CHO CHO CH2OH H OH HO H H OH H OH O CH2OH H OH H OH HO H HO H CH2OH H OH H OH H OH CH2OH H OH H OH CH OH 2 CH2OH glyceraldehyde threose ribose glucose fructose (triose) (tetrose) (pentose) (hexose) (hexose) 317 (aldohexose) (ketohexose) 25.2: Depicting carbohydrates stereochemistry: Fischer Projections: representation of a three-dimensional molecule as a flat structure.
    [Show full text]
  • Preparation of D-Arabinose-1-C^14 and D-Ribose-1-C^14
    Journal of Research of the National Bureau of Standards Vol. 51, No.6, December 1953 Research Paper 2458 14 Preparation of D-Arabinose-I-C'4and D-Ribose-l-C I Harriet L. Frush and Horace S. Isbell 1 By application of t he cyanohydrin synthesis to D-erythroso, D-arabinose-I-C14 a nd D­ t ribose-I-C" have been prepared in overall radiochemical yields of 30 and 8.5 percent, respectively. General acid catalysts in t he cyanohydrin reaction appear to favor format ion of t he ambonic epimer. The epimeri c acids res ul ting from the reaction of labeled cyanide and D-erythroso, and subsequent hydrolysis, were separated as crystalline potassium D­ arabonate-l-C14 and cadmium D-ribonate-l-C'4, respectively. The salts we re conver ted to the corresponding lactones, and t hese were red uced to t he sugars by usc of sodium amalgam in t he prese nce of sodi um a cid oxalate. 1. Introduction D-arabonate-l-C'4 was converted to D-arabono--y­ (" lactone-l-CI4, and this was reduced with sodium As part of it program to make position-labeled amalgam in the presence of sodium acid oxala te. 3 sugars available for research w'orkers in other labora­ A 56-percent yield of the crystalline D-arabinose-l-CI4 tories, methods have been developed at the National was separated without carrier ; by use of carrier, the Bureau of Standards for the preparation of D-glucose- radioch emical yield was increased to 60 percent. 1-CI4, D-mannose-1-CI", D-mannitol-l-C'4, n-fruc­ As potassium D-arabonate-l-CI4 was produced in 50- tose-l,6-C'\ lactose-l-C''', and D-arabinose-5-CI4 [1, percent yield, the over-all radiochemical yield of ~I 2, 3, 4, 5, 6).2 The present report gives methods D-arabinose-l-CI4 was 30 percent, based on Lhe for the preparation of D-arabinose-l-CI4 and n-ribose­ cyanide originally used.
    [Show full text]
  • Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature a GUIDE to IUPAC RECOMMENDATIONS
    Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS Principles of Chemical Nomenclature A GUIDE TO IUPAC RECOMMENDATIONS G.J. LEIGH OBE TheSchool of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK H.A. FAVRE Université de Montréal Montréal, Canada W.V. METANOMSKI Chemical Abstracts Service Columbus, Ohio, USA Edited by G.J. Leigh b Blackwell Science © 1998 by DISTRIBUTORS BlackweilScience Ltd Marston Book Services Ltd Editorial Offices: P0 Box 269 Osney Mead, Oxford 0X2 0EL Abingdon 25 John Street, London WC1N 2BL Oxon 0X14 4YN 23 Ainslie Place, Edinburgh EH3 6AJ (Orders:Tel:01235 465500 350 Main Street, Maiden Fax: MA 02 148-5018, USA 01235 465555) 54 University Street, Carlton USA Victoria 3053, Australia BlackwellScience, Inc. 10, Rue Casmir Delavigne Commerce Place 75006 Paris, France 350 Main Street Malden, MA 02 148-5018 Other Editorial Offices: (Orders:Tel:800 759 6102 Blackwell Wissenschafts-Verlag GmbH 781 388 8250 KurfUrstendamm 57 Fax:781 388 8255) 10707 Berlin, Germany Canada Blackwell Science KK Copp Clark Professional MG Kodenmacho Building 200Adelaide St West, 3rd Floor 7—10 Kodenmacho Nihombashi Toronto, Ontario M5H 1W7 Chuo-ku, Tokyo 104, Japan (Orders:Tel:416 597-1616 800 815-9417 All rights reserved. No part of Fax:416 597-1617) this publication may be reproduced, stored in a retrieval system, or Australia BlackwellScience Pty Ltd transmitted, in any form or by any 54 University Street means, electronic, mechanical, Carlton, Victoria 3053 photocopying, recording or otherwise, (Orders:Tel:39347 0300 except as permitted by the UK Fax:3 9347 5001) Copyright, Designs and Patents Act 1988, without the prior permission of the copyright owner.
    [Show full text]